CREATING A CAPITAL PLAN USING MST AND THE NASSCO PIPELINE ASSESSMENT PROGRAM

1-6

Michael A. Schober, PE, BCEE
 T&M Associates

-3

DC-1

AGENDA

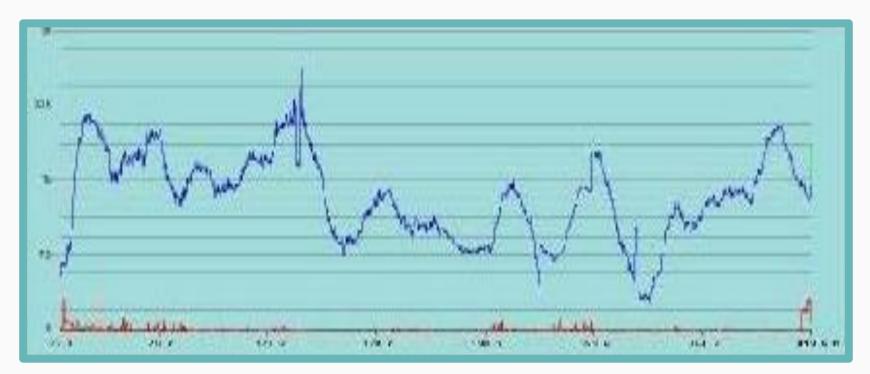
2

Overview of Multi-Sensor Technology (MST)

Project Description

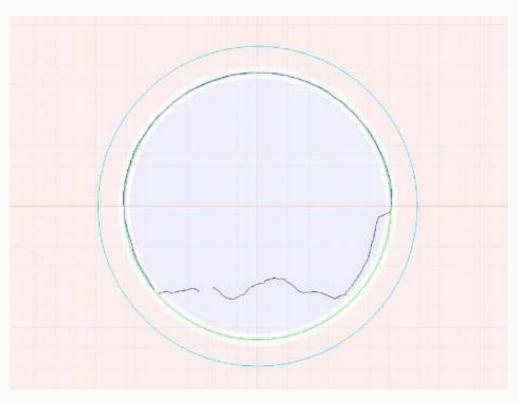
4

NASSCO Pipe Line Assessment Program



OVERVIEW OF MULTI-SENSOR TECHNOLOGY

Debris Graphs



Flat Graphs

Cross Sections

Debris to 13.7"

Line Report

Profile/Photo Observation Report

Date:	06/25/2017	Weather:	Dry		Coding:	PACP 4.2
Pipe Length (ft):	440.2	Owner:	WVSA		Pre Clean:	No Pre-Cleaning
P.O.#:		Surveyor:	Jen Costel	llo	PSR:	1-7_1-6
Customer:		dean Date:			Shape:	с
Street:	Levee Easement		Flow Contro	ol:	Not Controlled	l
City:			Year Renew	/ed:		
Location:	Other		Tape/Media	a #:		
Purpose:	Routine Assessment		Dia/Height:	:	78"	
Use:	Sanitary		Material:		RCP	
Drain Area:			Lining:			
Category:	NA					
Comment:						
Location Details:			Direction of	f Survey:	Downstream	
US MH: I	-7	DS MH:	1-6	To	tal Length Surveyed (ft)	: 440.2
0&M Index:	1.00	O&M Quick:		1N00	O&M Rating:	76
Structural Index:	2.98		uick:	3P22	Structural Rating:	262
Overall Index:	2.06	Overall Quic	k:	3P22	Overall Rating:	338

Line Report

I-7 1.0 AMH Manhole 10 NA 1.0 MWL Water Level 21 NA 5.7 SAV(S01) Surface Aggregate Visible 44 S3 57.3 RFJ(S02) Roots Fine Joint 158 M11 345.0 CL Crack Longitudinal 745 S2 371.4 CL Crack Longitudinal 810 S2 436.5 SAV(F01) Surface Aggregate Visible 951 S3 436.5 RFJ(F02) Roots Fine Joint 963 M1 440.2 AMH Manhole 981 NA	Position	Code	Observation	Video (sec)	Grade
.0AMHManhole10NA.0MWLWater Level21NA.0MWLWater Level21NA5.7SAV(S01)Surface Aggregate Visible44S 357.3RFJ(S02)Roots Fine Joint158M 1345.0CLCrack Longitudinal745S 2371.4CLCrack Longitudinal810S 2436.5SAV(F01)Surface Aggregate Visible951S 3436.5RFJ(F02)Roots Fine Joint963M 1					
5.7SAV(S01)Surface Aggregate Visible44S 357.3RFJ(S02)Roots Fine Joint158M 1345.0CLCrack Longitudinal745S 2371.4CLCrack Longitudinal810S 2436.5SAV(F01)Surface Aggregate Visible951S 3436.5RFJ(F02)Roots Fine Joint963M 1		АМН	Manhole	10	NA
57.3 RFJ(S02) Roots Fine Joint 158 M 1 345.0 CL Crack Longitudinal 745 S 2 371.4 CL Crack Longitudinal 810 S 2 436.5 SAV(F01) Surface Aggregate Visible 951 S 3 436.5 RFJ(F02) Roots Fine Joint 963 M 1	.0	MWL	Water Level	21	NA
345.0CLCrack Longitudinal745S 2371.4CLCrack Longitudinal810S 2436.5SAV(F01)Surface Aggregate Visible951S 3436.5RFJ(F02)Roots Fine Joint963M 1	5.7	SAV(S01)	Surface Aggregate Visible	44	S 3
371.4CLCrack Longitudinal810S 2436.5SAV(F01)Surface Aggregate Visible951S 3436.5RFJ(F02)Roots Fine Joint963M 1	57.3	RFJ(S02)	Roots Fine Joint	158	M 1
436.5SAV(F01)Surface Aggregate Visible951S 3436.5RFJ(F02)Roots Fine Joint963M 1	345.0	CL	Crack Longitudinal	745	S 2
436.5 RFJ(F02) Roots Fine Joint 963 M 1	371.4	CL	Crack Longitudinal	810	S 2
	436.5	SAV(F01)	Surface Aggregate Visible	951	S 3
440.2 AMH Manhole 981 NA	436.5		Poots Fina Joint	963	M 1
	10010	KFJ(FUZ)	ROOLS FILLE JOILL	505	141 1

Í I-6)

OVERVIEW OF INTERCEPTOR

OVERVIEW OF INTERCEPTOR

- 1. Constructed in late 1960's
- 2. Just over 5 Miles
- 3. Size Range 30" to 84"
- 4. Constructed of Reinforced Concrete Pipe

A Typical Report Summary will consist of a Database which includes this information:

- Pipe ID
- MH ID
- Diameter
- Length
- Water Depth
- Debris Depth
- Debris Volume
- Corrosion
- Structural Quick Score
- OM Quick Score

A Typical Report Summary will consist of a Database which includes this information:

- Pipe ID
- MH ID
- Diameter
- Length
- Water Depth
- Debris Depth
- Debris Volume
- Corrosion
- Structural Quick Score
- OM Quick Score

A Typical Report Summary will consist of a Database which includes this information:

		Pipe and Ins	pection Inform	nation				Sona	ir Data		Lase	r Data
Pipe ID	Upstream MH	Dnstream MH	Pipe Height /Diam (in)	Structural Score	OM	Length Surveyed	Water Depth (in)	Max Debris Depth (Inches)	Avg. Debris Depth (Inches)	Debris Volume (cu. Ft)	Avg. Corrosion (in)	Max. Corrosion (In)
1-48_1-47	I-48	I-47	30	5A35	0000	94	16.8	2.9	0.1	0.5	0.1	0.8
I-47_I-46	I-47	I-46	30	543P	211J	422.7	11	0	0	0	0.1	1.1
1-46_1-45	I-46	I-45	30	3H00	2300	231.6	14.2	0	0	0	0	0.8
1-45_1-44	I-45	I-44	30	5X35	0000	649.4	8.5	0	0	0	0.2	2.2
I-44_I-43	I-44	I-43	30	5B00	0000	94.2	9.4	0	0	0	0.6	2
I-43_I-42	I-43	I-42	30	5032	251 K	411	14.9	0	0	0	0.3	1.5
I-42_I-41A	I-42	I-41A	30	5A3D	0000	179.7	13.4	0	0	0	0.6	1.4
-41A_ -41	I-41A	I-41	30	3100	4100	14.1	0	0	0	0	0	2.3
I-41_I-40A	I-41	I-40A	30	553E	0000	154.7	12.4	0	0	0	0.3	1
I-40A_I-40	I-40A	I-40	30	3100	0000	9.1	0	0	0	0	0	0
I-40_I-39A_DS	I-40	I-39A	30	5637	0000	35.5	6.6	0	0	0	0.3	2.1
I-40_I-39A_US	I-40	I-39A	30	5637	0000	35.5	6.7	0	0	0	0.5	1.9
I-39A_I-39	I-39A	I-39	30	3000	0000	416.3	13.3	4.2	0.2	2.5	0.2	0.7
I-39_I-38	I-39	I-38	30	3E00	2111	157	12	3.2	0.5	4.9	0.1	1.9
I-38_JC-4	I-38	JC-4	30	3200	4100	6	10.8	0	0	0	0	0.3
JC-4_I-37	JC-4	I-37	48	5\$33	3214	509.4	25.1	7.8	1.1	69.3	0.6	2.9

[Pipe and Ins	pection Inform	nation		-	1
	Pipe ID	Upstream MH	Dnstream MH	Pipe Height /Diam (in)	Structural Score	OM	Length Surveyed	
Ī	1-48_1-47	I-48	I-47	30	5A35	0000	94	Ē .
[I-47_I-46	I-47	I-46	30	543P	211J	422.7	Data
Pip	1-46_1-45	I-46	I-45	30	3H00	2300	231.6	Max. Corrosion
	1-45_1-44	I-45	I-44	30	5X35	0000	649.4	(in)
I-48 I-47	I-44_I-43	I-44	I-43	30	5800	0000	94.2	0.8
1-46	I-43_I-42	I-43	I-42	30	5032	251K	411	0.8
I-45 I-44	I-42_I-41A	I-42	I-41A	30	5A3D	0000	179.7	2.2
I-43 I-42	I-41A_I-41	I-41A	I-41	30	3100	4100	14.1	1.5 1.4
I-41A	I-41_I-40A	I-41	I-40A	30	553E	0000	154.7	2.3
I-41 I-40A	I-40A_I-40	I-40A	I-40	30	3100	0000	9.1	
1-40_1-3	I-40_I-39A_DS	I-40	I-39A	30	5637	0000	35.5	2.1
-40_ -3 -39A	I-40_I-39A_US	I-40	I-39A	30	5637	0000	35.5	1.9 0.7
I-39 I-38	I-39A_I-39	I-39A	I-39	30	3 000	0000	416.3	1.9 0.3
I-38 JC-4	I-39_I-38	I-39	I-38	30	3E00	2111	157	0.3 2.9
	I-38_JC-4	I-38	JC-4	30	3200	4100	6	r
ſ	JC-4_I-37	JC-4	I-37	48	5\$33	3214	509.4	Г

]		Sona	ar Data		E		
			Water Depth (in)	Max Debris Depth (Inches)	Avg. Debris Depth (Inches)	Debris Volume (cu. Ft)	j.		
			16.8	2.9	0.1	0.5			
			11	0	0	0			
	Τ	Pipe and	14.2	0	0	0	F	Laser	er Data
Pipe ID	Upstream MH	Dnstream M	8.5	0	0	0	Debris Volume (cu. Ft)	Avg. Corrosion (in)	Max. Corrosion (In)
1-48_1-47	-48	I-47	9.4	0	0	0	0.5	0.1	0.8
-47_ -46 -46 -45	I-47 I-46	I-46 I-45					0	0.1	1.1 0.8
<u> </u>	I-46 I-45	1-45	14.9	0	0	0		0.2	2.2
I-44_I-43	I-44	I-44	13.4	0	0	0	0	0.6	2
I-43_I-42	I-43	I-42	0	0	0	0	0	0.3	1.5
I-42_I-41A	I-42	I-41A	_				0	0.6	1.4
-41A_ -41	I-41A	-41	12.4	0	0	0	0	0	2.3
-41_ -40A -40A -40	I-41 I-40 A	I-40A I-40	0	0	0	0		0.3	1 0
I-40_I-39A_DS	I-40A	I-39A					0	0.3	2.1
I-40_I-39A_US	I-40	I-39A	6.6	0	0	0	0	0.5	1.9
I-39A_I-39	I-39A	I-39	6.7	0	0	0	2.5	0.2	0.7
1-39_1-38	I-39	I-38		_			4.9	0.1	1.9
I-38_JC-4	I-38	JC-4	13.3	4.2	0.2	2.5	0	0	0.3
JC-4_I-37	JC-4	I-37	12	3.2	0.5	4.9	69.3	0.6	2.9
			10.8	0	0	0			
			25.1	7.8	1.1	69.3			

16

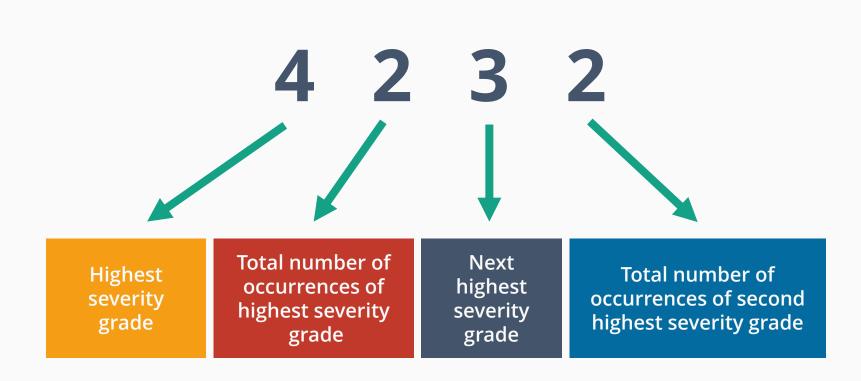
				Lasei	r Data
			:	Avg. Corrosion (in)	Max. Corrosion (In)
				0.1	0.8
		Dia a su d las		0.1	1.1
		Pipe and Ins		0	0.8
Pipe ID	Upstream MH	Dnstream MH	Pipe Heig /Diam (i	0.2	2.2
1-48_1-47	I-48	I-47	30		
1-47_1-46	I-47	I-46	30	0.6	2
I-46_I-45	I-46	I-45	30	0.3	1.5
1-45_1-44	I-45	I-44	30		
-44_ -43	1-44	I-43	30	0.6	1.4
-43_ -42 -42 -41A	I-43 I-42	I-42 I-41A	30	0	2.3
-41A -41	I-41A	I-41A	30	0	2.3
I-41 I-40A	I-41	I-40A	30	0.3	1
I-40A_I-40	I-40A	I-40	30		
I-40_I-39A_DS	I-40	I-39A	30	0	0
I-40_I-39A_US	I-40	I-39A	30	0.3	2.1
I-39A_I-39	I-39A	I-39	30		
1-39_1-38	I-39	I-38	30	0.5	1.9
I-38_JC-4	I-38	JC-4	30		
JC-4_I-37	JC-4	I-37	48	0.2	0.7
				0.1	1.9
				0	0.3
				0.6	2.9

	Sona	ar Data		Laser Data			
	Max Debris Depth (Inches)	Avg. Debris Depth (Inches)	Debris Volume (cu. Ft)	Avg. Corrosion (in)	Max. Corrosion (In)		
	2.9	0.1	0.5	0.1	0.8		
٦	0	0	0	0.1	1.1		
	0	0	0	0	0.8		
	0	0	0	0.2	2.2		
	0	0	0	0.6	2		
	0	0	0	0.3	1.5		
	0	0	0	0.6	1.4		
	0	0	0	0	2.3		
	0	0	0	0.3	1		
	0	0	0	0	0		
	0	0	0	0.3	2.1		
	0	0	0	0.5	1.9		
	4.2	0.2	2.5	0.2	0.7		
	3.2	0.5	4.9	0.1	1.9		
	0	0	0	0	0.3		
	7.8	1.1	69.3	0.6	2.9		

1

A Typical Report Summary will consist of a Database which includes this information:

- Pipe ID
- MH ID
- Diameter
- Length
- Water Depth
- Debris Depth
- Debris Volume
- Corrosion
- Structural Quick Score
- OM Quick Score



PACP Grading System

Grade 5	Immediate	Pipe has failed or will likely fail.
Grade 4	5-10 Years	Pipe has severe defects.
Grade 3	10-20 Years	Pipe has moderate defects.
Grade 2	20-30 years	Pipe has minor defects.
Grade 1	30+ Years	Pipe has minor defects.

STRUCTURAL QUICK SCORE

			Pipe and Ins	pection Inform	nation			[
	Pipe ID	Upstream MH	Dnstream MH	Pipe Height /Diam (in)	Structural Score	OM	Length Surveyed	
Ī	1-48_1-47	I-48	I-47	30	5A35	0000	94	F
	1-47_1-46	I-47	I-46	30	543P	211J	422.7	Г
	1-46_1-45	I-46	I-45	30	3H00	2300	231.6	ata
Pipe	1-45_1-44	I-45	I-44	30	5X35	0000	649.4	1ax. Corrosior
	I-44_I-43	I-44	I-43	30	5B00	0000	94.2	(In)
-48_ · -47_ ·	I-43 I-42	I-43	I-42	30	5032	251K	411	0.8
-46_ · -45_ ·	I-42_I-41A	I-42	I-41A	30	5A3D	0000	179.7	0.8
<u> -43_ </u>	-41A_ -41	I-41A	I-41	30	3100	4100	14.1	2.2
-43_ · -42_ -	I-41_I-40A	I-41	I-40A	30	553E	0000	154.7	<u>1.5</u> 1.4
I-41A_	I-40A_I-40	I-40A	I-40	30	3100	0000	9.1	2.3
I-41_I-	I-40_I-39A_DS	I-40	I-39A	30	5637	0000	35.5	
I-40_I-39	I-40_I-39A_US	I-40	I-39A	30	5637	0000	35.5	2.1
I-40_I-39 I-39A_	I-39A_I-39	I-39A	I-39	30	3 0 0 0	0000	416.3	1.9 0.7
-39_ - -38_]	I-39_I-38	I-39	I-38	30	3E00	2111	157	1.9 0.3
JC-4_ŀ	I-38_JC-4	I-38	JC-4	30	3200	4100	6	2.9
	JC-4 -37	JC-4	I-37	48	5\$33	3214	509.4	Γ

PIPELINE CONDITION SUMMARY

		Pipe and Ins	pection Inform	nation				Sona	ar Data		Lase	r Data
Pipe ID	Upstream MH	Dostream MH	Pipe Height /Diam (in)	Structural Score	ом	Length Surveyed	Water Depth (in)	Max Debris Depth (Inches)	Avg. Debris Depth (Inches)	Debris Volume (cu. Ft)	Avg. Corrosion (in)	Max. Corrosion (In)
1-48 1-47	1-48	1-47	30	5A35	0000	80	16.8	2.9	0.1	0.5	0.1	0.8
1-47_1-46	1-47	1-46	30	543P	211J	400	11	0	0	0	0.1	1.1
1-46_1-45	1-46	1-45	30	3H00	2300	250	14.2	0	0	0	0	0.8
1-45_1-44	1-45	1-44	30	5X35	0000	650	8.5	0	0	0	0.2	2.2
1-44_1-43	1-44	1-43	30	5800	0000	100	9.4	0	0	0	0.6	2
I-43_I-42 I-42 I-41A	I-43 I-42	1-42 1-41A	30 30	5032 5A3D	251K 0000	420 200	14.9 13.4	0	0	0	0.3	1.5
1-42_1-41A	1-42 1-41A	I-41A	30	5A3D 3100	4100	200	13.4	0	0	0	0.6	2.3
I-41 I-40A	1-41	1-41A	30	553E	0000	125	12.4	0	0	0	0.3	2.5
1-40A 1-40	1-40A	1-40	30	3100	0000	15	0	0	0	0	0.5	0
I-40 I-39A DS	1-40	I-39A	30	5637	0000	40	6.6	0	0	0	0.3	2.1
I-40_I-39A_US	1-40	I-39A	30	5637	0000	40	6.7	0	0	0	0.5	1.9
I-39A_I-39	I-39A	I-39	30	3000	0000	400	13.3	4.2	0.2	2.5	0.2	0.7
1-39_1-38	I-39	1-38	30	3E00	2111	150	12	3.2	0.5	4.9	0.1	1.9
I-38_JC-4	1-38	JC-4	30	3200	4100	10	10.8	0	0	0	0	0.3
JC-4_1-37 1-37_1-36	JC-4 1-37	1-37	48 48	5\$33 5F31	3214 1E00	500 150	25.1 26	7.8	1.1	6.2	0.6	2.9
1-37_1-36	1-37	1-36	48	5F31 5C00	1500	150	25.4	3.6	0.4	6.2	0.6	1.6
1-36_1-35	1-36	1-35	40	5D3U	1500	600	25.4	18.5	6.2	2.6	0.5	2.8
1-34 1-33A	1-34	F33A	60	3P00	211P	400	30.5	7.3	4.9	346.5	0.3	1.9
F33A_F33	F33A	1-33	60	3600	1F00	200	28.3	13.7	6.7	274.2	0.3	1.7
1-33_1-32	1-33	1-32	60	3A00	1300	50	28.6	6.3	1.6	8.3	0.1	2.3
1-32_1-31	1-32	1-31	?	5A00	1100	30				ta Missing		
I-31_I-30	1-31	1-30	72	3200	0000	80	32.5	9.2	4.5	7.5	0	1.6
1-30_1-29	1-30	1-29	72	3200	1X00	500	35.6	26.1	15.1	3669.9	0	0.2
1-29_1-28	1-29	1-28	72 72	0000	1T00	600	25.5	8.1	0.4	21.3	0.3	1.3
I-28_Val-1 Val-1 I-25	1-28 Val-1	Val-1 1-25	72	3500 3500	1100 0000	500 450	24.8 31.7	7.4	2.1 6.1	177.6 825.6	0.2	0.7
1-25 1-24	1-25	1-24	72	3900	0000	450	36.3	19.7	14.4	1755.6	0	0.5
1-24 1-23	1-24	1-23	72	3800	0000	120	24.7	0.4	0.1	0.1	0.2	0.5
1-23_1-53	1-23	1-53	72	5131	0000	225	33.3	18.8	6.2	431.8	0.4	0.9
I-53_I-19	1-53	F19	72	3Z21	0000	1000	29.5	17.8	8.6	2404.4	0.1	1.1
I-19_I-21	1-19	I-21	72	3200	211K	800	37.1	19.2	11.2	2402.3	0.1	10.6
I-21_I-20	I-21	I-20	72	3700	0000	50	28.9	7.8	5.8	36.7	0.3	1.2
I-20_I-18_DS	1-20	I-18	72	3J00	0000	250	29.8	6.9	2	161.9	0.1	0.4
I-20_I-18_US I-18 I-17	I-20 I-18	I-18 I-17	72	3J00 31.00	0000	325 600	25.7 30.9	4.8	0.9 5.7	21.6 642.4	0.1	0.4
1-16_1-17	1-10	1-17	72	3100	2111	500	29.7	7.5	5.7 0.9	642.4 79.5	0,3	2.5
1-17_1-10	1-16	F15A	72	3800	1H00	500	30.1	0.4	0	0.5	0.1	1.6
115A_115	F15A	1-15	72	3000	1N00	400	31.2	2.9	0	1.1	0.2	0.9
I-15_I-14	1-15	I-14	72	3X22	1T00	625	32	8.6	0.3	29.9	0.3	1
I-14_I-13A	1-14	I-13A	72	3T21	0000	500	34.8	5.4	0.2	7.4	0.1	0.5
F13A_F13	F13A	I-13	72	3100	0000	275	36.4	7.1	0.5	21.3	0.3	0.7
I-13_I-12	1-13	I-12	72	3800	0000	100	37.6	1.1	0.1	0.5	0.2	0.7
I-12_I-11	1-12	1-11	72	3V00	1N00	600	33.6	0.8	0.1	2.1	0.1	0.8
1-11_1-10 1-10 1-9	I-11 I-10	1-10 1-9	72	3U00 3500	0000	550 500	33.7 36	5.4 9.8	0.1	3.8	0.2	0.8
1-9 1-8	F10	1-9	72	3500 3V21	1100	550	35.9	3	0.3	4.8	0.2	0.8
1-8_1-7	1-8	1.7	72	3100	1N00	500	36.3	9.8	0.5	30.9	0.1	0.7
1-7_1-6	1-7	1-6	72	3P22	1N00	450	34.5	8.7	0.7	44.1	0.1	0.7
1-6_1-5	1-6	1-5	72	3X22	1V00	650	34.6	2.8	0.2	6	0.2	0.8
1-5_1-4	1-5	1-4	72	3X00	1100	650	38.9	7	0.4	21.9	0.1	0.6
1-4_1-3	1-4	1-3	72	3Z21	0000	750	32.4	1.2	0.1	3.8	0.2	1.8
1-3_DC-1	1-3	DC-1	72	3200	0000	1200	30.5	0.5	0	0.5	0	0.5
DC-1_I-2 I-2 I-1	DC-1 F2	1-2	78	5A3L 513T	2100 1Q00	450 550	32	2.2 8.7	0.1	1.6 21.1	0.3	1.8
1-2_1-1 1-1_1-0	F2 F1	1-1	78	5131 5R31	1Q00 1R00	500	35	8.7	0.4	13.6	0	0.5
F0 F00	F1 F0	1-00	78	513V	1800	650	35.7	4.4	0.4	25.1	0	8
1-00_1-000	1-00	1-000	84	5C41	1100	150	40.2	1.3	0.2	1	0.1	0.7
I-000_Wet Well	1-000	Wet Well	84	3800	0000	75	40	2.1	0.3	0.6	0	0.5
III-6_III-5	III-6	III-5	36	3100	312B	300	21.7	13	11.2	495.3	0	0.1
111-5_111-4	111-5	111-4	36	3R00	312H	500	21.5	14.5	9.8	756.7	0	0.3
III-4_III-3A	111-4	III-3A	36	3C00	1100	150	21.7	11.8	10.1	225.6	0	0.4
III-3A_III-3	III-3A	III-3	36	413Q	1P00	475	19.6	11.8	7.3	482.5	0.1	0.4
III-3_III-2	111-3	111-2	36	0000	11.00	400	17.3	5.2	1.6	52.4	0	0.1
III-2_III-1	111-2	III-1	36	3D00	1D00	150	21.3	10.2	3.9	62.9	0	0.3
III-1_III-OP	III-1 III-OP	III-OP	36	3000	2200	100	21.8	7.9	5	32.1	0	0.4
III-OP_I-00	III-OP	1-00	72	3M00	0000	400	25.5	22.2	12	1197.2	0.1	0.5

Severity	No. of Pipe	Total
Grade	Segments	Feet
5	20	6,010
4	1	475
3	45	17,635
2	0	0
1	2	1,000

CAPITAL PLANNING

Severity	Pipe	Feet	Cost Pe	er Foot	Total	Cost
Grade	Diameter		Low	High	Low	High
5	30	2,055	\$200	\$350	\$411,000	\$719,000
	48	800	\$400	\$500	\$320,000	\$400,000
	60	630	\$600	\$750	\$378,000	\$473,000
	72	225	\$750	\$1,000	\$169,000	\$225,000
	78	2,150	\$850	\$1,200	\$1,828,000	\$2,580,000
	84	150	\$900	\$1,400	\$135,000	\$210,000
	To be rehabilit	tated in 0 to	o 5 years		\$3,241,000	\$4,607,000
3	30	875	\$200	\$350	\$175,000	\$306,000
	36	1,200	\$300	\$400	\$360,000	\$480,000
	60	650	\$600	\$750	\$390,000	\$488,000
	72	14,835	\$750	\$1,000	\$11,126,000	\$14,835,000
	84	75	\$900	\$1,400	\$68 <i>,</i> 000	\$105,000
	To be rehabilit	tated in 10	to 20 years		\$12,119,000	\$16,214,000

Use Technology to more efficiently to inspect large diameter sewers.

Use Industry Standards to assess pipeline conditions.

Develop a long-term capital and financing plan to accomplish your goals.

QUESTIONS

Presenter

Michael Schober, PE, BCEE Regional Client Service Manager T&M Associates mschober@tandmassociates.com | 717.781.8709

SOUTH MONMOUTH REGIONAL SEWERAGE AUTHORITY (SMRSA)

SERVES 8 MUNICIPALITIES

MAJOR ASSETS

- 9.1 MGD Wastewater Treatment Plant
- 11 pump stations
- -12 miles of force main

CLIMATE DRIVES PROJECTS

Three Major Storm Events

SMRSA's Cost of Rehabilitation after:

2009 NOR'EASTER \$1.8 Million 2011 HURRICANE IRENE

\$2.5 Million

\$1.8 Million

2012 SUPERSTORM SANDY

CLIMATE RELATED CHALLENGES

SPRING LAKE'S PENNSYLVANIA AVENUE PUMP STATION | SANDY, DAY 8

LAKE COMO PUMP STATION | SUPER STORM SANDY

Impacts of extreme wet weather events:

- Temporary loss in Sanitary Sewer Service
- Damage to assets and infrastructure
 - Flooding
 - Wind Damage
 - Storm Surge
- Power Outages
- Potential increase in service rates for customers

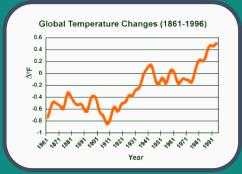
OVERVIEW OF MULTI-SENSOR TECHNOLOGY

RAPID RESPONSE/RECOVERY:

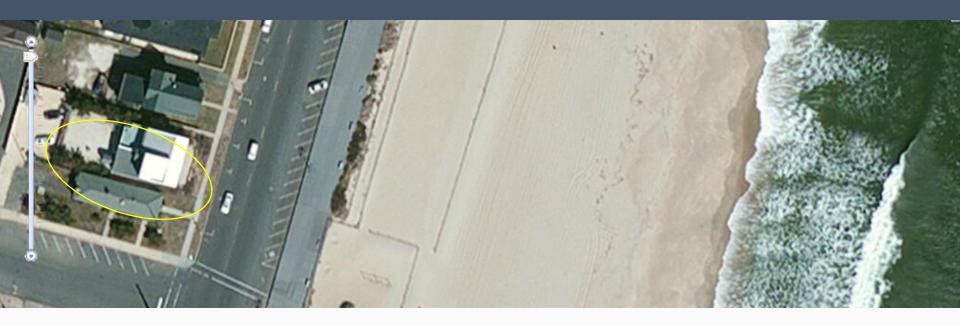
Pump Station Mobile Enclosure

- The enclosure consists of two rooms
 - One sound-attenuated room for the emergency generator
 - Another climate-controlled room for the electrical equipment including controls, alarm systems, variable speed drives and SCADA System
- Electrical and control connections between the enclosure and the pump station and its equipment are made with cables and plugs that can be opened to permit removal of the enclosure and transport it to a safe location.

CREAT


When selecting a resiliency option, SMRSA recognized that there is a need for:

Long-term climate conditions



Timing of climate events to prioritize planning

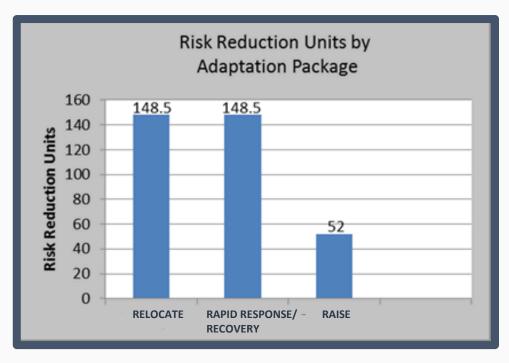
Long term planning to protect critical assets in a cost effective manner. **re-sil-ience** [re'ziyens] *noun* The capacity to recover quickly from difficulties

CASE STUDY

Belmar Pump Station

- CREAT identified potential climate change threats to the pump station based on location:
 - Storm Surge, Flooding
- CREAT provided multiple future climate scenarios

- Performs **BASELINE RISK ASSESSMENT** of the pump station's current resilience to these threats
 - What is the utility's current level of risk for the pump station?
 - DO NOTHING Scenario
- Provides strategies that build resiliency into projected climate changes
 - Populated CREAT with strategies and associated capital costs



- Performs a second assessment: Resilience Assessment
 - Risk assuming Raise, Relocate or Rapid Response/Recovery is implemented

- CREAT calculates risk reduction based on the difference between baseline conditions and resilience conditions
- The adaptive measures are compared and prioritized on the basis of risk reduction and cost.

\$4.4 M \$1.9 M

Mobile Enclosure Version 2.0: Pitney Avenue Pump Station

Adaptive Measures

- Mobile Pump Station
- All electrical equipment above 500 year flood elevations

Cost: \$1.6 Million | Risk Reduction Units: 101

BEFORE

Mobile Enclosure Version 3.0: Belmar Pump Station

Adaptive Measures

- Mobile Pump Station
- All electrical equipment above 500 year flood elevations
- Submersible Pumps

Cost: \$1.6 Million Risk Reduction Units: 101.4

BEFORE

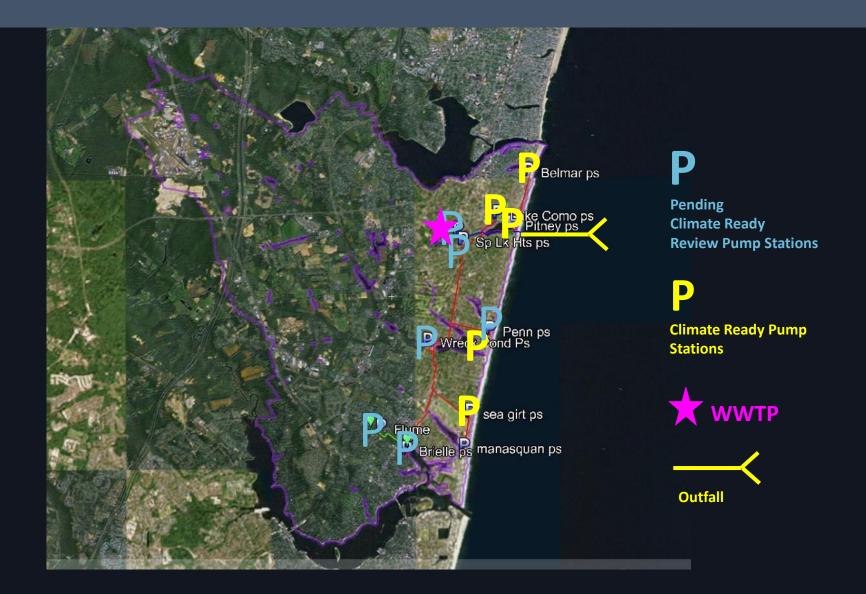
Lake Como Pump Station

Adaptive Measures

- Relocate building
- Extend force main and sewer line

Cost: \$3.2 Million Risk Reduction Units: 145 BEFORE

Penn Avenue Pump Station


Adaptive Measures

- RAISE
- All electrical equipment raised 4 feet above 500 year flood elevation

Cost: \$2.4 Million Risk Reduction Units: 54

SMRSA's Regional Resiliency Plan

Funding for a Climate Readiness Program

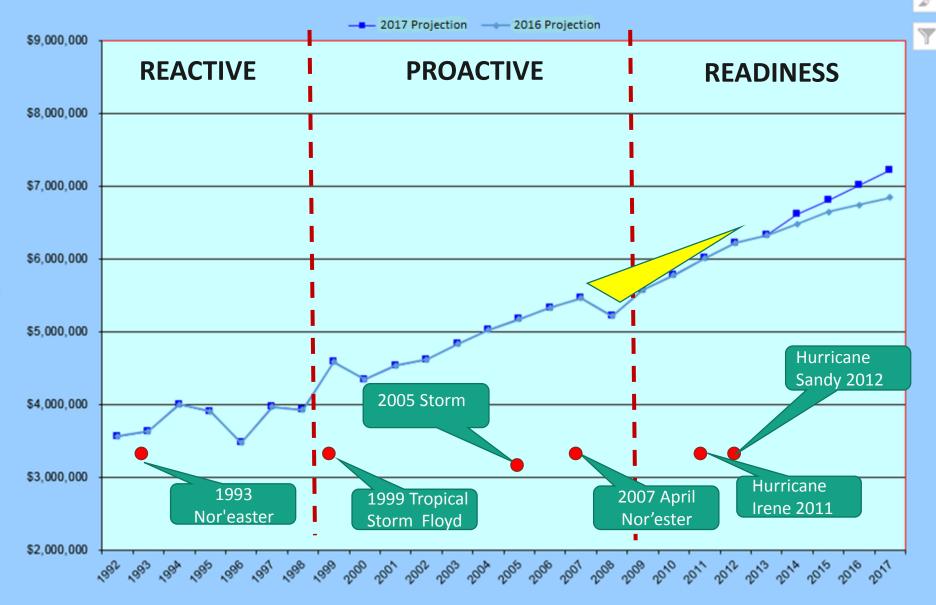
Internal Funding Mechanisms:

- Dedicated, set aside fund for:
- Disaster funding
- Climate Readiness
- Asset Management

3

Funding for set aside funds is accumulated through an annual rate increase

- 2-3 percent annually
- Rate stabilization
- Predicable, reasonable, necessary strategy


Implement capital improvements with a high potential for resiliency

South Monmouth Regional Sewerage Authority Sewer Use Charge History with 2016 & 2017 Projection

÷

Mobile Enclosure Version 3.0: Belmar Pump Station FUNDING:

- State funded
- NJEIT
- SAIL Program
- 19% Principal Forgiveness Loans
- Authority Reserves

Lake Como Pump Station

FUNDING: – 90% FEMA

- Authority Reserves
- NJEIT
- SAIL Program

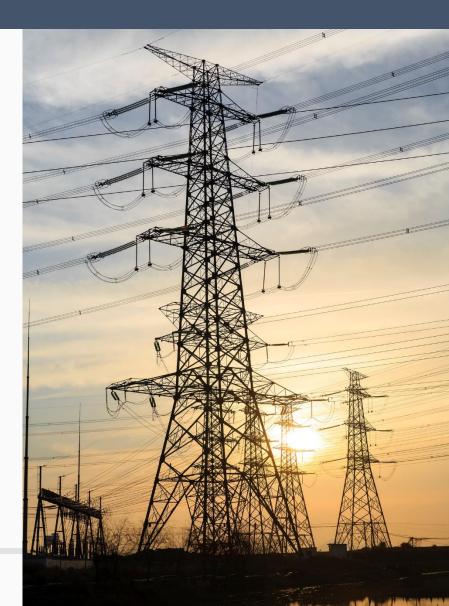
Penn Avenue Pump Station

FUNDING: 100% Authority Reserves

Always tell your story...

Financial Strategies

- Consistent, persistent dialogue with state and federal agencies
- Be prepared to support your proposal with data
- Transparency with customers


Climate Change Readiness for the Wastewater Treatment Plant Cogeneration System

GAS CONDITIONING SYSTEM : REMOVES WATER, HYDROGEN SULFIDE, SILOXANES INTERNAL COMBUSTION ENGINES

Cogeneration: WWTP Emergency Response Plan

When there is a power outage...

- The cogeneration system produces approximately 42-52% of the electricity
- Auxiliary Generators provide the balance
 - 1,200 kW Primary Generator
 - 500 kW Secondary Generator

COGENERATION

Future Operations

Normal Operation:

- Cogen system provides about 60% of the plant's energy
 - Utilize 270 kW Dual
 Fuel Engine
- Authority will purchase 40% of remaining required energy

During a Power Outage:

- Cogen system provides about 100% of the plant's energy
 - The plant becomes a "Island"
 - Utilize 270 kW Dual
 Fuel Engine
 - Utilize the two 160
 kW Dual Fuel
 Engines
- Utilize auxiliary generators

Funded by New Jersey Energy Resiliency Bank

- Total Project Cost : \$3,390,000
- Total Grant Portion: \$2,847,674
- Loan Portion: \$1,070,326

