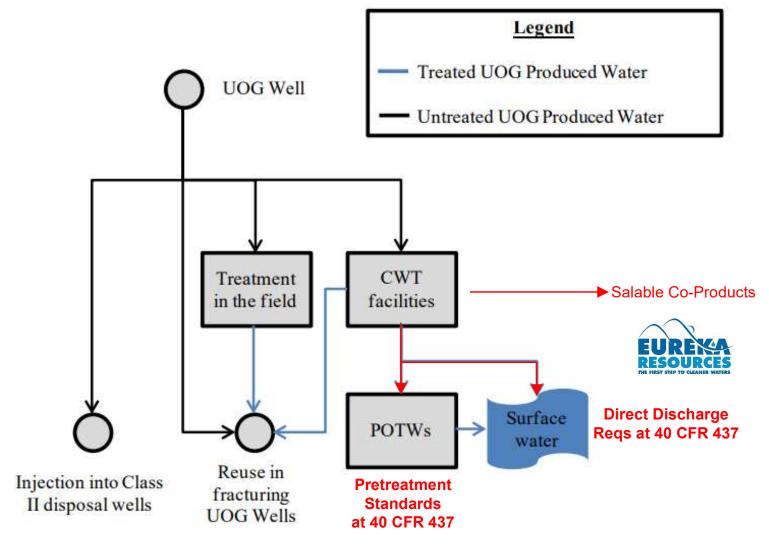

#### What is Unconventional Oil & Gas Wastewater?



Source: EIA



## Shale gas extraction




# Wastewater Characteristics Comparison

| Parameter<br>(mg/L) | Municipal<br>Wastewater,<br>Typ. (M&E) | Marcellus<br>(PA - Eureka)  |
|---------------------|----------------------------------------|-----------------------------|
| TS                  | <700                                   | 100,000 <b>–</b><br>600,000 |
| TDS                 | <500                                   | 250,000 <b>–</b><br>400,000 |
| Metals              | <150                                   | >25,000<br>(individual)     |
| Chlorides           | <50                                    | 140,000 –<br>150,000        |
| Sodium              | 40-70                                  | 50,000 –<br>60,000          |
| TENORM<br>(µR/hr)   | BG                                     | BG –<br>BG+250              |
| COD                 | 260 - 900                              | 20,000 <b>–</b><br>30,000   |
| Total N             | <40                                    | 200 – 600                   |



#### **Primary Management Methods**





#### **Background and Philosophy**

- Eureka is a pioneer and leader in development of innovative, cost-effective, and environmentally-responsible solutions for treatment and management of unconventional oil and gas wastewater.
- Permit/design/build/operation of robust, <u>centralized</u> oil and gas wastewater treatment facilities with the following goals and objectives:

#### Level-of-treatment optionality:

- Pretreated Wastewater water treated to reduce the suspended solids;
   some dissolved solids.
- Distilled Wastewater water treated to remove dissolved solids
- Concentrated CaCl2 Brine heavy (over 10.5 pounds per gallon) water that is very high in dissolved solids
- De-Wasted (Fresh) Water water that meets freshwater standards –
   WMGR123 Appendix A Limits.

#### Disposal-level treatment:

Ability to convert complex residual waste into freshwater.

- Turning residual waste into commercial-grade usable co-products:
   Maximizing recovery and beneficial reuse of recoverable co-products –
   MeOH, NaCl, Ca<sub>2</sub>Cl, LiCl.
- Approaching TRUE Zero Liquid Discharge (ZLD).



#### **Existing Treatment Facilities**

#### Second Street Facility, Williamsport, PA

- 8,000 to 10,000 BPD pre-treat capacity
- 2,400 to 4,800 BPD distillation capacity
- Discharge permit for disposal to WSA POTW (only one in the entire state of PA)
- Robust Solids-handling & Oil Recovery Systems
- Methanol Rectification Column



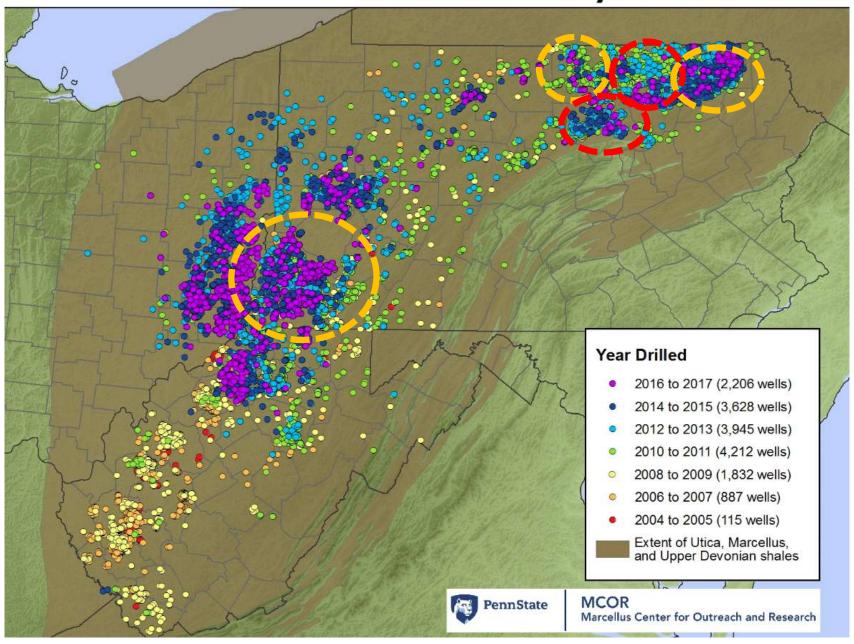


#### Reach Road Facility, Williamsport, PA

- Truck unloading / treatment / storage
- Future rail access
- Fully permitted site with potential discharge capability



#### **Standing Stone, PA Facility**


- 6,000 to 8,000 BPD pre-treat capacity
- 5,000 BPD crystallization
- Eureka patented "dewaste" process
- Discharge permit to Susquehanna River (only operating Marcellus discharge in state of PA)
- · Commercial salt drying and packaging line.
- Ability to process low and high TDS waters.

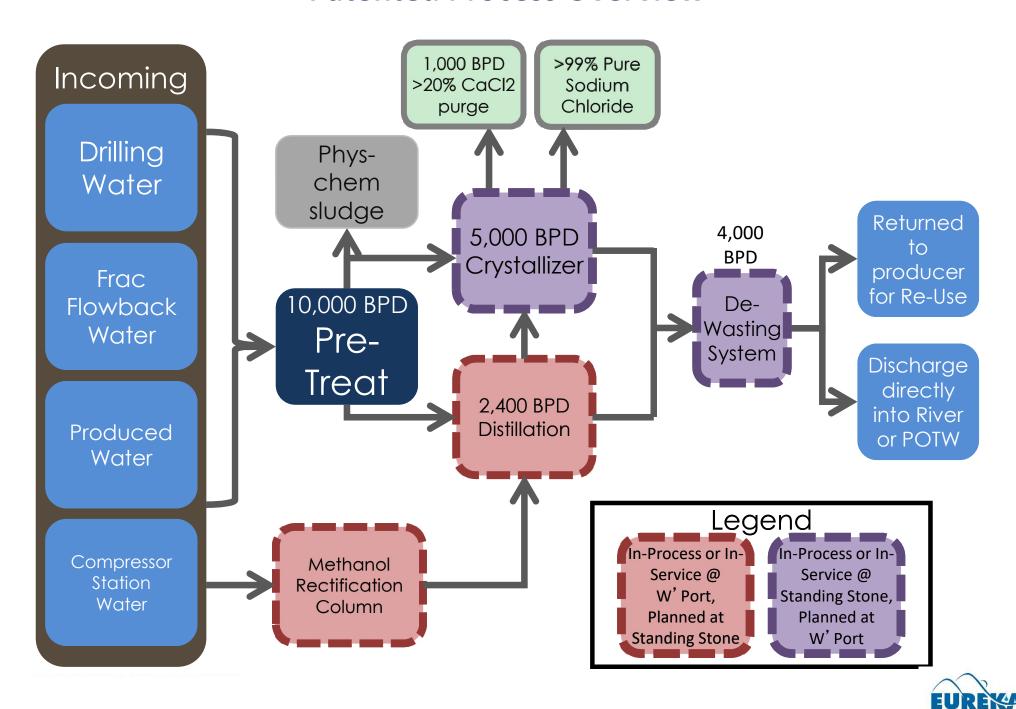




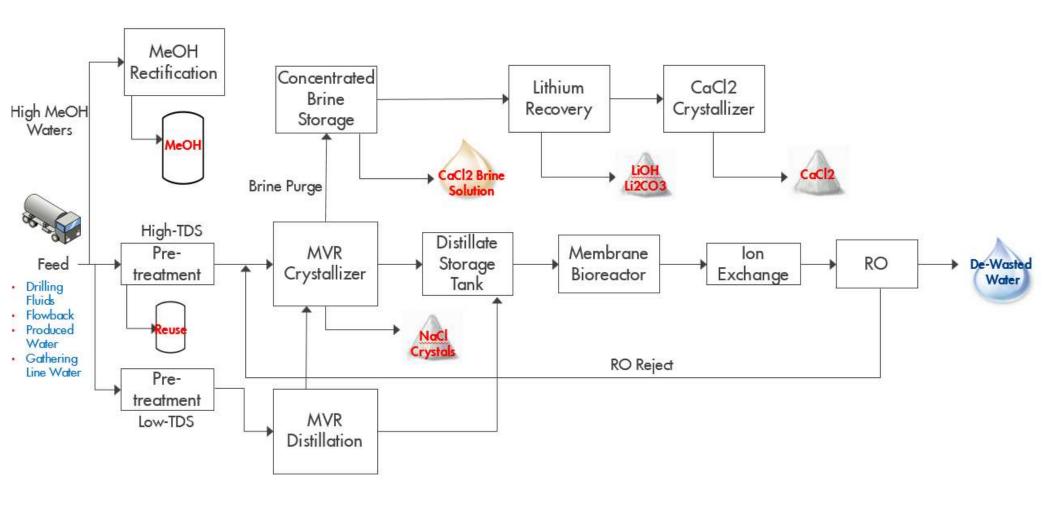


#### **Unconventional Wells Drilled by Year**









Proposed facilities and approximate watersheds to be served



#### **Patented Process Overview**



# Eureka Resources Patented Treatment and Resource Recovery Process Overview





### The Water Conditioning Salt Success Story – From O&G Wastewater... to Big Box Store Shelves @ Walmart and Lowes

- Multi-year deal in hand with biggest distributor of sodium chloride in North America (Scotwood Industries).
- Capital investment in salt drying and bagging processes (20 t/hr nameplate capacity).
- Currently generating 100 125 pallets/day of bagged product.









### Final Effluent Quality – Williamsport Facility Indirect Discharge to Municipal POTW

| Parameter                 | Effluent Limit –<br>Monthly Ave.<br>(mg/L) | Long Term<br>Ave Effluent<br>Quality<br>(mg/L) |
|---------------------------|--------------------------------------------|------------------------------------------------|
| COD<br>(Load – PPD)       | 1,688                                      | 550                                            |
| CBOD<br>(Load – PPD)      | 1,298                                      | 363                                            |
| TSS                       | Monitor                                    | <5                                             |
| Chloride                  | 125                                        | 2.37                                           |
| Barium                    | 2.0                                        | 0.13                                           |
| TDS                       | 250                                        | <25                                            |
| Ammonia                   | Monitor                                    | <45                                            |
| Ra-226,<br>Ra-228 (pCi/L) | Monitor                                    | <1                                             |

- Federal CWT ELGs in Organics
   Treatment and Recovery Subpart
   (40 CFR 437, Subpart C)
- 25 Pa Code Chapter 95
- WSA Regulations



### Final Effluent Quality – Standing Stone Facility Direct Discharge to Susquehanna River

| Parameter        | Effluent Limit –<br>Monthly Ave.<br>(mg/L) | Long Term Ave Effluent Quality (mg/L) |
|------------------|--------------------------------------------|---------------------------------------|
| BOD <sub>5</sub> | 53                                         | <2                                    |
| TSS              | 61.3                                       | <5                                    |
| TDS              | 500                                        | <20                                   |
| NH <sub>3</sub>  | 10                                         | <1 - 6                                |
| Barium           | 10                                         | <0.01                                 |
| Chloride         | 250                                        | <1 - 3                                |

- Federal CWT ELGs in Organics Treatment and Recovery Subpart (40 CFR 437, Subpart C)
- 25 Pa Code Chapter 95

Nearest Public Water Supply Intake:

Danville, PA – 127 miles downstream



## **De-Wasting Demonstration PADEP WMGR123 Appendix A**

- Sampling Plan based on WMGR123 Appendix A General Permit Requirements
- Conducted sample collection (MBR/IX/RO effluent) for the initial demonstration from July 21 through September 19, 2014:
  - Daily flow-proportional composite samples
  - Weekly flow-proportional composite samples
  - Grab samples
- Analytical results confirmed that concentrations of all parameters as required by Part C.22.b of the WMGR123 permit were lower than, equal to, or otherwise not detected when compared to the de-wasting limits included in Appendix A for all samples
- De-Wasting demonstration approved by PADEP on 11/24/14

| Parameter         | Standard (mg/L)    |
|-------------------|--------------------|
| Metals            | 1.2 ug/L – 25 mg/L |
| Chloride          | 25                 |
| NH3               | 2                  |
| Bromide           | 0.1                |
| COD               | 15                 |
| Ethylene Glycol   | 13 ug/L            |
| Gross Alpha, Beta | 15 – 1000 pCi/L    |
| MBAs              | 0.5                |
| Alcohols          | 0.7 - 3.5          |
| O&G               | ND                 |
| Nitrate-Nitrite   | 2                  |
| рН                | 6.5 - 8.5          |
| Ra-226 + Ra-228   | 5 pCi/L            |
| Sulfate           | 25                 |
| Toluene           | 0.33               |
| TDS               | 500                |
| TSS               | 45                 |
| Uranium           | 30 ug/L            |



### Effluent Characterization for Center for Responsible Shale Development (CRSD) Certification



#### **CRSD Effluent Characterization Approach and Results**

- De-Wasting System (MBR/IX/RO) effluent samples
- Five sampling events over three weeks
- Parameter list developed by CSSD based on potential chemical constituents in produced and flow back wastewater within Appalachia Basin
- Wastewater Effluent Toxicity (WET) testing also performed
- Eureka is 'Best Available Technology' basis for CRSD shale wastewater effluent surface water performance standard

| Analysis                                         | Method                                         |
|--------------------------------------------------|------------------------------------------------|
| TOC                                              | EPA 415.1                                      |
| Aldehydes                                        | SW-846 8315                                    |
| VOCs                                             | SW-846 8260B with 20 non-<br>interpretive TICs |
| SVOCs                                            | SW-846 8270C with 25 non-<br>interpretive TICs |
| Pentanoic and Hexanoic<br>Acids                  | 8270C-TLS (Library Search)                     |
| Organic Acids                                    | SW-846 8015B (mod)                             |
| Alcohols                                         | SW-846 8015B (mod)                             |
| Glycols                                          | LC/MS/MS 8321AMOD                              |
| TPH C8-C40                                       | SW-846 8015B (TPH)                             |
| 30 ICP Metals                                    | SW-846 6010B                                   |
| Anions - Sulfate, Chloride,<br>Fluoride, Bromide | EPA 300                                        |
| Ammonia                                          | EPA 350.2                                      |
| TDS                                              | SM 2540D                                       |
| Ra 226 and Ra 228,<br>dissolved, insoluble       | EPA 903.1 and 904                              |
| Acrylamide                                       | EPA 603                                        |
| MBAS                                             | Method SM 5540 C-2000                          |
| Mercury                                          | Cold Vapor Method EPA<br>245.7                 |
| Nonylphenol                                      | WS-MS-0010                                     |
| Nitrite                                          | SW-846 9056/A                                  |



#### **Advantages to Eureka's Philosophy**

- Valuable freshwater returned back to the hydrologic cycle; disposal-level solution; very valuable as play shifts towards production phase and creates water imbalance.
- No adverse to downstream public water intakes.
- Lower risk profile compared with other management alternatives, such as:
  - Storage and reuse without treatment and/or minimal level of treatment
  - UIC disposal; where logistics are favorable, centralized treatment are cost competitive
- Breaks the cycle of continual accumulation of dangerous contaminants in, or emission to, the environment; provides best opportunity to <u>CAPTURE AND RECOVER</u> contaminants (e.g., VOCs, HAPs, TENORM, salts) – <u>a TRUE SINK for contaminants.</u>
- Reduction of the long-term costs associated with continual cycle of treatment and recycling of oil and gas wastewaters
  - Field storage and transport of dangerous residual waste
  - Reduced EURs and well fouling
  - Complexity of drilling and completion fluids engineering
  - UIC impacts (seismic? aquifer contamination? over-pressurized producing zones?)
- Complete revision of public perceptions!!! The technology and expertise <u>IS</u> out there to manage unconventional O&G brines!

