Optimizing Polymer Mixing/Activation Improves Sludge Dewatering: Case Studies

Yong Kim, Ph.D. Technical Director UGSI Chemical Feed, Inc.

2018 Joint PA-AWWA/PWEA/PMAA Water and Wastewater Technology Summit State College, PA, November 1 – 2, 2018

Dewatering Cost at EMWD - \$3.7M/yr

Polymer Cost - Average \$1.2 M/yr

K. Tagney and R. Gupta, Reducing Dewatering Costs through Optimization Program, 2017 WEFTEC.

Presentation Overview

1. Science of Polymer Activation

- Viscosity as an indicator of polymer solution quality
- Effect of dilution water
- Two-stage mixing for dry and emulsion polymers
- Residence time sufficient for polymer uncoiling/dissolution
- Weissenberg effect in dry polymer mixing

2. Case Studies

- Water Treatment Plant, PA emulsion polymer
- Wastewater Treatment Plant, CA- dry polymer
- 3. Aging Issue in Dry Polymer Activation

Three Forms of Polymer Solutions

Neat polymer

Fisheyes due to <u>poor</u> <u>initial wetting</u>

Ideal polymer chains by two-stage mixing

Broken polymer chains by excessive mixing

Viscosity – Indicator of Polymer Solution Efficiency

 Quantity of friction as measured by the force resisting a flow in which parallel layers have at unit speed relative to one another

Sakaguchi, K.; Nagase, K., Bull. Chem. Soc. Japan, 39, p.88 (1966)

Polymer supplier data sheet provides a starting point for viscosity – critical factor for polymer efficiency

Solenis, Inc.

Table of Properties - PRAESTOL® Cationic Polymers (Emulsion)

_		_	
		_	

PRAESTOL POLYMER GRADE	CATIONIC CHARGE	ACTIVE CONTENT	DENSITY (GR/ML)	PRODUCT VISCOSITY (CP)	SOLUTION VISCOSITY 1% IN DIST. WATER ⁽¹⁾ (CP)	SOLUTION VISOCITY 1.0% in 10% NaCI-Brine ⁽²⁾ (CP)	FREEZING POINT (°C)	EFFECTIVE pH RANGE
K105I	Low	30%	1.04	<4000	>5000	>2000	-15	1-10
K110FL	Low	35%	1.03	<4000	>3000	>1000	-15	1-10
K120L	Low-Medium	40%	1.03	<4000	>7000	>500	-15	1-10
K226FLX	Medium	29%	1.03	<4500	>8000	>400	-15	1-10
K111L	Medium	40%	1.03	<4000	>7000	<u>~500</u>	-15	1-10
K122L	High	43%	1.04	<4000	>9000	>300	-15	1-10
K128L	High	43%	1.04	<4500	>9000	>900	-15	1-10
K132L	High	35%	1.01	<5500	>8000	>300	-15	1-10
K133L	High	44%	1.05	<4000	>8000	>150	-15	1-13

Effect of Dilution Water Quality

<u>Ionic strength (Hardness)</u>: multi-valent ion hinders polymer activation

- Soft water helps polymer molecules fully-extend faster
- Hardness over 400 ppm may need softener

Oxidizer (chlorine): chlorine attacks/breaks polymer chains

- Should be less than 3 ppm
- Caution in using recycled water for polymer mixing
 - + Serious negative impact on aging/maturing

<u>Temperature</u>*: higher temperature, better polymer activation

- Water below 40 °F may need water heater
- Water over 100 °F may damage polymer chains

Suspended Solids/ Turbidity:

- In-line strainer recommended
- Caution in using recycled water for polymer mixing

*David Oerke, 20% less polymer with warm water, 40% more polymer with 140F sludge, Residuals and Biosolids (2014)

Effect of Dilution Water Chlorine Content

When reclaimed water used for polymer mixing, chlorine < 3 mg/L

Polymer Activation (Mixing, Dissolution)

(I) Initial Wetting (Inversion)

Sticky layer formed
High-energy mixing -> No fisheyes

Most Critical Stage

(II) Dissolution

Reptation* or Uncoiling
Low-energy mixing -> No damage to polymer

* de Gennes, P.G., J. Chem. Phys., 55, 572 (1971)

Two-Stage Mixing (in mix chamber)

higher energy mixing → low energy mixing

CLARIFLOC® WE-1181 POLYMER TYPICAL PROPERTIES

Physical Form Clear to Milky White Liquid

Cationicity 60%
Active Polyacrylamide Min. 45.0 %
Freezing Point 7 F. (-14 C.)
Flash Point >200 F. (>93 C.)

Density TBD

PREPARATION AND FEEDING

CLARIFLOC WE-1181 is a single component emulsion polymer that must be pre-diluted in water before use. In most cases, this product should not be applied neat. One method for dilution is adding the neat polymer into the vortex of a mixed tank at a concentration—between 0.25-1.0% polymer (0.5% is optimum) by weight. The polymer can also be injected through a number of commercially available systems that provide in-line mechanical mixing. The best feed systems use initial high energy mixing (>1000 rpm) for a short time (<30 sec) to a shieve good dispersion followed by low energy mixing (<400 rpm) for alonger time (10-30 min). Polymer solutions should be aged for 15-68 minutes for best results—Solution shelf life is 8-16 hours.

YM-PDS-NA-Praestol Cationic Polymers

There are a number of commercially available automatic feed systems that provide in line mechanical mixing. The best units of this type feature initial high energy mixing (>1000 rpm) for a short time (<15 sec) to achieve good dispersion of the product into water. This is followed by lower energy mixing (<400 rpm) for a longer period of time (10-20 min) and aging for an additional 10-29 minutes to achieve complete polymer dissolution. Best practice is to use these in-line dilution systems followed by a mixing/aging tank fitted with high/low level probes to refill the tank. The optimum concentration in the mixing/aging tank is 0.5 percent, and in no case should the initial concentration of polymer be less than 0.25 percent for best results.

"Discrete" Two-Stage Mixing discrete means "separation of high and low energy mixing zones"

One-Stage vs Two-Stage Mixer (Emulsion Polymer)

1- stage mixer

2- stage mixer

G-value, mean shear rate (sec⁻¹)

One-Stage Mixing vs. Two-Stage Mixing

Two-stage mixing → significant increase of polymer solution efficiency

Viscosity of 0.5% Emulsion Polymer Solution, cP

Residence Time (in mix chamber)

Sufficient residence time of low-energy mixing zone is required for complete polymer dissolution

$$t = \frac{V}{v} \qquad \qquad v \qquad \qquad v$$

Residence time (t) in flocculating basin: Gt-value Gt-value = mean shear rate x residence time

Contact time (*T*) in clear well design: *CT* calc

CT calc = residual chlorine concentration x contact time

Residence time (t) in polymer activation

Second stage of polymer activation – "uncoiling" of long chain polymer molecules requires more time under low energy mixing than high energy first stage mixing

Effect of Residence Time on Polymer Activation

Volume of low-energy zone: V_L $V_{L,MM} = 3* V_{L,M}$

Effect of Residence Time of Mix Chamber (0.5% polymer solution viscosity, cP)

16-mgd Water Plant, PA with two BFP (2-M)

Existing Polymer System
Siemens M1200-D10AA (2011)

New Polymer System UGSI MM1200-D10AA (2016)

Test Results of Two Mixing Chambers

Effect of Residence Time of Low-shear Zone

- Side-by-Side Trial from Feb to May 2016
- *Polymer savings 30% 35%*
- Sludge throughput increased by 10%

Polymer science dictates the most effective way of activating polymers- Your activation equipment should follow:

First-Stage of Dry Polymer Mixing:

High Energy Initial Wetting

Very High-Energy Mixing for Short Time

 $G = 15,000 \text{ sec}^{-1}$

3,450 rpm for < 0.5 sec

Water in

Disperses Individual Polymer Particles

- * No Fisheye Formation
- * Shorter Mixing Time in Next Stage

Why Initial High-Energy Mixing is So Critical?

Polymer dissolution time, $t_s \sim (\text{diameter})^2$ Tanaka (1979)*

Initial high-energy mixing → No fisheye formation → Significantly short mixing time

* Tanaka, T., Fillmore, D.J., J. Chem. Phys., 70 (3), 1214 (1979)

Mixing Tank for Dissolution of Dry Polymer

Patented Hollow-Wing Impeller

No Weissenberg Effect

Large Impeller, **70%** of tank diameter

Uniform Mixing Energy

Low RPM, 60 rpm

- Low-intensity Mixing
- Minimize Damage to Polymer Chain

Shorter Mixing Time – Due to high energy DD4

- 20 30 min for Cationic Polymer
- 30 40 min for Anionic Polymer
- Minimize Damage to Polymer Chain

Weissenberg Effect in Polymer Mixing

- * Polymer solution exceeding "critical concentration" climbs up mixing shaft
- * Extremely non-uniform mixing
- * Critical factor for "conventional" polymer mix tank → max 0.2% limit for HMW polymer

Notice polymer solution is "climbing" up the mixer shaft (30 min after mixing (Nalco TX13182): 0.25%, 0.50%)

Polymer Mixing Tank With No Weissenberg Effect

Impeller / tank diameter > 0.7

Cationic Polymer Solution @ 0.75%

Case Study: Dry Polymer Mixing System Fairfield-Suisun Sewer District, CA

- Solano County, CA, 40 miles North San Francisco
- Design capacity: 24 MGD tertiary treatment/ UV
- Population served: 135,000
- Polymer use for dewatering (screw press) and thickening (GBT)

FKC screw press runs at average 70 gpm of sludge (2% solids content)

Problems with existing polymer system

- Struggled to make proper polymer solution
- Polymer performance inconsistent
- Frequent maintenance issues

Pilot Testing with Two Polymer Mix Equipment

Existing Polymer System

- Initial wetting: air blower -> wetting head
- Mixing: two (2) 4,600 gal mix/age tanks
- <u>1 hour mixing and 4 8 hour aging time</u>

UGSI PolyBlend Dry Polymer Demo System

- Initial wetting: high-energy mechanical mixing
- Mixing: two (2) 360 gal mix tanks
- 20 minute mixing, 10+ minute transfer time

Newly Installed Dry Polymer System

FSSD Installed New PolyBlend®DP2000 Performance Data in 2016

FSSD saved <u>42%</u> on Screw Press Polymer in 2016 despite an increase in solids throughput by <u>18%</u>

AGING "accelerated maturing" by initial high-energy wetting

Water in

Very High-Intensity Mixing for Short Time

G = 15,000 sec⁻¹ @ 3,450 rpm Residence time < 0.5 sec

Disperses Individual Polymer Particles

- * No Fisheye Formation
- * Complete dissolution in 20 30 min mixing
- * Aging reduced or eliminated

How Much Aging is Required for Dry Polymer?

Minimum aging required for well-designed equipment

Rao, M, Influents (WEA Ontario, Canada), Vol. 8, 42 (2013)

Aging – heavily depends on Polymer, Mixing, Water

Aging may help:

- * Very high molecular-weight, low charge (nonionic) polymers, or
- * Low energy mixing at initial wetting stage

Aging does not help:

- * Medium high molecular-weight, high charge polymers, or
- * Very high energy mixing at initial wetting stage

Aging may hurt:

- * Reclaimed water for polymer mixing, or
- * Low concentration of polymer solution

Aging must be reconsidered when reclaimed water is used

Thank You Any Questions?

