

Catching Energy Thieves in your Pump Stations

Tom Walski

Which pump is wasting energy?

Energy

- Pump energy can be major O&M cost
- Major portion of life-cycle cost
- Depends on type of system
- Energy savings are achievable

Base Pump Selection on Life-Cycle Costs

Cost = Equipment + spwf (Energy + O&M)

Relative Energy vs. Initial Cost

Energy Savings

- Design-Pump Selection
 - Base on life-cycle costs
 - Tradeoff between piping and pumping
 - Don't just analyze design point
 - Consider range of operation
- Operation
 - Analyze pumping strategies
 - Minimize demand charges
 - Beware of bad combinations
 - Monitor energy bills

Overall (wire-to-water) Efficiency = Water Power/Input Power

Pump Efficiency = Water Power/Motor Power

Calculating What Energy Cost Should Be

Don't just calculate at Best Efficiency Point

Operation varies over the day, season, long term

Converting Energy to Cost

Energy Cost

- More than kwh x \$/kwh
- Energy pricing complicated
- Complicating factors
 - Peak demand charge
 - Time-of-day pricing
 - Block rates
 - Block rates as function of peak
 - Multiple rates
 - Seasonal rates
 - Multiple energy providers
 - Take or pay conditions
 - Open energy market

CANCELLING MO.P.S.C. SCHEDULE NO. 5 29th Revised SHEET NO. 34

MISSOURI SERVICE AREA APPLYING TO

SERVICE CLASSIFICATION NO. 3 (M) LARGE GENERAL SERVICE RATE

* Rate Based on Monthly Meter Readings

Summer Rate	(Applicable	during 4 monthly billing
	periods of	June through September)

\$83.04 Customer Charge - per month Low-Income Pilot Program Charge - per month \$ 0.50 Energy Charge - per kWh 9.30¢

First 150 kWh per kW of Billing Demand 7.00¢ Next 200 kWh per kW of Billing Demand All Over 350 kWh per kW of Billing Demand 4.70¢ Demand Charge - per kW of Total Billing Demand \$ 4.34 0.05¢ Energy Efficiency Program Charge - per kWh (1)

\$83.04

(Applicable during 8 monthly billing Winter Rate periods of October through May)

Customer Charge - per month \$ 0.50 Low-Income Pilot Program Charge - per month Base Energy Charge - per kWh 5.86¢ First 150 kWh per kW of Base Demand Next 200 kWh per kW of Base Demand 4.34¢ All Over 350 kWh per kW of Base Demand 3.41¢ Seasonal Energy Charge - Seasonal kWh 3.41¢ Demand Charge - per kW of Total Billing Demand \$ 1.61 Energy Efficiency Program Charge - per kWh (1) 0.03¢

(1) Not applicable to customers that have satisfied the opt-out provisions of Section 393.1075, RSMo.

Optional Time-of-Day Adjustments

Additional Customer Charge - per Month \$17.72 per month

On-Peak Off-Peak Energy Adjustment - per kWh Hours (2) Hours (2) -0.62¢ Summer kWh (June-September billing periods) +1.10¢ -0.19¢ Winter kWh (October-May billing periods) +0.33¢

(2) On-peak and off-peak hours applicable herein shall be as specified in Rider I, paragraph A.

Fuel and Purchased Power Adjustment (Rider FAC). Applicable to all metered kilowatt-hours (kWh) of energy.

*Indicates Change,

Issued pursuant to the Order of the Mo.P.S.C in Case No. ER-2011-0028.

July 18, 2011 DATE EFFECTIVE July 31, 2011 DATE OF ISSUE St. Louis, Missouri ISSUED BY

President & CEO Warner L. Baxter ADDRESS NAME OF OFFICER

Vigência Para Adimplentes de 23/06/10 em diante Os valores das tarifas não consideram os 15% desconto

TARIFA CONVENCIONAL SUBGRUPO A4			% Dif. Tarifa Anterior
Consumo	145,22	R\$/MWh	-11,66
Demanda	32,82	R\$/kW	28,28
Demanda Ultrapassagem	98,46	R\$/kW	28,28

TARIFA HOROSSAZONAL AZUL SU	JBGRUPO A4	
Consumo Ponta Seca	222,21 R\$/MWh	-6,60
Consumo Ponta Úmida	202,17 R\$/MWh	-5,93
Consumo Fora de Ponta Seca	143,29 R\$/MWh	-2,88
Consumo Fora de Ponta Úmida	131,66 R\$/MWh	-1,96
Demanda Ponta	33,89 R\$/kW	9,00
Demanda Fora de Ponta	8,42 R\$/kW	10,81
Demanda Ultrapassagem Ponta	101,67 R\$/kW	9,01
Demanda Ultrapassagem Fora de Ponta	25,26 R\$/kW	10,85

TARIFA HOROSSAZONAL VER	DE SUBGRUPO A4	
Consumo Ponta Seca	1009,17 R\$/MWh	15,48
Consumo Ponta Úmida	989,13 R\$/MWh	5,96
Consumo Fora de Ponta Seca	143,29 R\$/MWh	-2,88
Consumo Fora de Ponta Úmida	131,66 R\$/MWh	-1,96
Demanda	8,42 R\$/kW	10,81
Demanda Ultrapassagem	25,26 R\$/kW	10,85

Descontos Percentuais - Água, Esgoto e Saneamento - Grupo A				6,20
Consumo	15	%		
Demanda	15	%]	

VSP vs. Constant

VFD Efficiency

7 Configurations

View VSP Operating Points

Good **Efficiency** At High Flow

Topography

Hydropneumatic Tank Considerations

- Small (tiny) Systems
- Low/zero flow periods
 - Camp grounds
 - Ski resorts
 - Stadiums
 - Golf courses

Identifying Poor Capacity

Two Pumps 270 gpm 62%

Modeling is not just for planning engineers

Many opportunities in operations

Fix Leaks

Control I&I

Figure 1. Adverse effects of operating away from the BEP (reproduced from Ref. 2, courtesy of Allweiler AG).

Braun, E. and Leiber, W, 2007, "The right pump lowers total cost of ownership," World Pumps, 491, 30-33.

Peak Demand Charge

- Based on peak kw use in some period
- Must understand period
 - 15 min, 1 hr
 - Seasonal
 - Time of day
 - Coincident peak
- Ratchet effect of peak (billing demand)
 - Current billing period
 - Year
- Includes non-pumping power
- Must educate operators

Time-of-Day Pricing

- Can store water Can't store electricity
- Lower energy pricing during off-peak hours
- May only apply in peak season or other peak period
- Store energy by pumping water during off-peak hours

Time-of-Day

Time-of-Day Pricing

- Store energy by pumping water during off-peak hours
- Identify best operating rules
 - Change on-off during peak periods
 - Start peak period full
- Identify additional storage for peak period storage

Water Level

Don't Pump into PRV

Check Net Positive Suction Head

- NPSH(available) > NPSH (required)
- Prevent cavitation

Pump Scheduling

- Optimal scheduling
- Uncertainty in demand pattern
- Many good solutions
- Online vs. Offline calculations

Energy Studies

- Quick payback
- Reduce carbon footprint

Response Calibrated EPS Model **Cost Calculations Energy Bill** Compare Agree Disagree Savings Possible? Resolve Differences: Model error Change: Operations Done Equipment Adjust curves **Operations** Bill error

Take Home Points

- Energy and carbon emission savings possible
- Need to look for savings
- Can be good payback
- Hydraulic model can help

You won't catch energy thieves unless you look for them

Which pump is inefficient?

