Fullerton Reservoirs

63 Million Gallons of New Finished Water Storage for the Baltimore Distribution System

Gannett Fleming, Inc.
Nicholas Lewis, PE
Dennis Funk, PE

Baltimore County Department of Public Works
Gerald McHenry, PE
Mike Mazurek, PE
History at Fullerton

- 1953: Susquehanna River identified as alternate supply
- 1955: Purchase of Fullerton Site for WFP, Storage, Transmission Facilities
- 1962: Construction of 108” begins
- 1996: Construction of Transmission Facilities begin
Purpose

First Zone
- Distribute storage throughout the zone
- Fire flow protection

Pumping Station
- Meet required NPSH
- Attenuate impacts of the PS on the Fullerton Transmission Main

Reservoir Storage
- 63 MG - design capacity
Fullerton Filtration Plant Study Including 1 MGD Pilot Plant.

- Recommendations
 - Q = 120 MGD
 - Baffle the New Reservoirs
Zone 1 Hydraulics (Ultimate)

O.E. = 215

Q = 120 MGD

O.E. = 230

1st Zone
Glen Burnie, Baltimore City, Dundalk, Essex, Middle River
Total Design Storage

- Head Storage
- Operating Storage
- CT Storage

OE: 230
FFE: 190
40’
Baffle Walls

Concentric “C” walls

Radial Wall

Adjacent Inlet and Outlet

4’ x 4’ Removable Plate for Maintenance

Periodic 18-inch Wide Floor Level Openings for Drainage
Site Hydraulics

- **West tank**: 300’ Ø, 40’ Water Depth
- **Middle tank**: 300’ Ø, 40’ Water Depth
- **East tank**: 300’ Ø, 40’ Water Depth
- **Ex. 84”**: 42’
- **FFP Connection**
- **Check Valve (inf)**
- **Check Valve (eff)**
- **Disinfection (inf)**
- **Disinfection (eff)**
- **Flow Meter (inf)**
- **Flow Meter (eff)**
- **PCCP Yard Piping (typ)**
Reducing Minor Losses

Slanting Disc Check Valve
- Disc mounted nearer to center of gravity.
- Results in over 5x less headloss than swing check.
- Mountable dashpot prevents slamming and water hammer.

Reducing Wye
- Fixed connection point and alignment geometry favored wye.
- Use of fabricated pipe allowed for custom fitting.

Magnetic Flow Meter
- No energy loss.
Site Utilization

Tanks
• AWWA D110 Type 3
• Column Supported, Flat Roof
• Partially Backfilled

Location Onsite
• Near Finished Water Connections and FPS
• Existing Topography
• Allowed Ample Space for Future FFP Siting

Orientation
• Along Ridgeline, High Elevation of the Site.
Earthwork Balance
Construction Grading

- 380,000 Cu. Yd. of Cut (EL 210 – 187)
- 250,000 Cu. Yd. of Fill (EL 230 – 280)
- 130,000 Cu. Yd. of Fill (EL 210 – 230)

- Steep slopes
- Wetlands
- Wall panel work area
- 108” Raw Water
Final Grading

Perm. Pile 1
(EL 280–240)

Perm. Pile 2
(EL 230–220)

Perm. Fill Around West and Middle Tanks
(EL 200–210)

Grading for Potential FFP Access Road

Roof
EL 232±
Award of Contract

<table>
<thead>
<tr>
<th></th>
<th>Bid Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidder 1</td>
<td>$73,149,520.10</td>
</tr>
<tr>
<td>Bidder 2</td>
<td>$77,712,310.00</td>
</tr>
<tr>
<td>Engineer's Estimate</td>
<td>$88,255,841.00</td>
</tr>
</tbody>
</table>

- Contract Awarded November 21, 2016
- NTP Given February 1, 2017
- 3 Year Contract Duration
Construction Progress
Site Progression – July 2017

- Channel Stabilization
- Sediment Pond Construction
- Site Clearing
- Excavate West and Middle Tanks
- Stockpile 1
- West Tank Subgrade
- Complete Mass Excavation
- Concrete Batch Plant
- West Tank Floor Pour 1
- West Tank Column and Panel Casting
- Middle Tank Subgrade
- Vault Construction

Stockpile 1
Stockpile 2
Subgrade
Pour 1 (Complete)
Pour 2 (Rebar and Formed)
Pour 3 (Subgrade)
Site Progression – March 2018

- West Tank Roof Construction
- Middle Tank Column and Panel Casting
- East Tank Floor Pour 1
- Vault and Piping Construction
Concrete Work

- Onsite Batch Plant Operated and by Ready Mix Supplier

- Noise and Work Hour Restrictions Relaxed for Large Pours (Floor / Roof)

- Community Notifications Required for Each Large Pour
Floor Pours

- Two Joints Max, No Radial Joints Allowed
- Batch Plant and Delivered Concrete

- 4,050 yds (per Tank)
- 10 hours (Avg. per pour)
Roof Pours

- Fewer Joint Restrictions
- Batch Plant Concrete
- 1,800 Yards (per Tank)
- 6 hours (First Pour)
- Q1 Poured on April 6th

Q1 Pour
450 Yards

Q2 Pour
450 Yards
Liebherr LR-1300

- Required to Lift 10 Ton Baffle Wall Panels to Tank Center and 40 Ton Wall Panels
- 350 Ton Crawler
- 300 ft of Total Boom
- 200 Tons of Total Counterweight
Lessons Learned

• Standards for Specials

• Geotechnical Liability

• Submittal Management

• Project Team Cooperation
C200 and Testing Specials

- Transition from PCCP to Steel in Vaults
- AWWA C200 Requires Hydrostatic Testing Around 350 PSI for Each Pipe Length
- Hydrostatic Not Required for Special Section (Bends and Fittings)
C200 and Testing Specials

- Can be Argued that C200 Only Requires Visual Weld Inspections for Specials
- Manufacturer Provided Dye Penetrant Testing
- Hydrostatic Field Testing Required
Subgrade Approval

- Intent to Have Tank Manufacturer Responsible for All Tank Design and Construction
- GF Provided Tank Subgrade Recommendations for Tank Design
- Specs Called For Engineer Approval for All Subgrades
Submittal Management

• Contractor Provided and Manages Submittal Database

• 1 Year Into Construction
 • 500 Submittals
 • 100 RFI’s
 • 450 Concrete Test Reports
 • Daily Soils Reports
 • Schedule Updates
Baffle Wall Joint Plate

- Baffle Walls Constructed with ±1” Gap Between Panels
- Design Called for 6” Wide x 3/8” Thick FRP Strip to Cover Joint with Intermediate Tacking “As Required”
- Contractor Requested Use of 1/4” Strip, Secured Solely by Compression
Baffle Wall Joint Mock-Up

- 20 FT High Joint
- Modeled Tightest Radius
- 4FT and 8FT Compression Plate Spacing
- 4FT Preferential
- Strip Thickness Was Acceptable
- Concern that Wood Surface was Smoother than Concrete
Cover Plate Installation

- Requires Tacking

FRP Strip

4'-0"