Increasing Occurrence of High Fecal Indicator Bacteria (FIB) in Headwater Streams within the Lower Delaware River Watershed

Jinjun Kan, John K. Jackson, Dave. B. Arscott, Shane A. Morgan, Jenny M. Egan, and Nancy Roberts-Lawler

Stroud Water Research Center
Avondale, PA 19311
Excess sediments, nutrients and pathogenic microorganisms (USEPA).
What Bacteria are monitored

- Total coliform ➔ Fecal coliform ➔ *E. coli / Enterococcus*

- Public health agencies have used total coliforms and fecal coliforms as indicators since 1920s
 - non-fecal origin bacterial groups
 - coliforms can regrow in natural environments
 - Still being used in many states and agencies

- *E. coli* and *Enterococcus*
 - More specific bacterial groups
 - Currently are commonly used
 - Recommended by US EPA (2012)
EPA approved

Most Probable Number (MPN) based approaches

Total coliform, *E. coli* and *Enterococci* (Colilert, Enterolert from IDEXX)
Sampling at DRW sites

Clusters Sampled
- Brandywine and Christina
- Middle Schuylkill
- New Jersey Highlands
- Poconos and Kittatinny
- Upper Lehigh
- Upstream Suburban Philadelphia
High variability between samples

* Values outside of IDEXX readable range (>24196 MPN counts/100mL)
High variability between samples
High variability between samples
High variability between samples

* Values outside of IDEXX readable range (>24196 MPN counts/100mL)
High variability between samples

Values outside of IDEXX readable range (>24196 MPN counts/100mL)
Exploratory Analyses

Correlation hunting

Watershed size

Land cover – 2013 data from University of Vermont Spatial Analysis Lab
E. coli with watershed size

R (p-value): Pearson=-0.10 (0.262); Spearman=-0.40 (0.000)
Manifestation of Entero with watershed size

R (p-value): Pearson=-0.19 (0.028); Spearman=-0.71 (0.000)
Relationships with land uses

- Forest %
- Agriculture (Low vegetation %, mostly Ag but lawns, nursery plantings etc.)
- Developed %, structures and other impervious surfaces
Log₁₀(E. coli MPN counts/100 ml)

Land Cover %

E. coli vs. forest (%)

R (p-value): Pearson = -0.18 (0.042); Spearman = -0.47 (0.000)
Entero vs. forest (%)

R (p-value): Pearson = -0.22 (0.028); Spearman = -0.48 (0.000)
E. coli vs. Agriculture (%)

R (p-value): Pearson=0.18 (0.038); Spearman=0.48 (0.000)
Entero vs. Agriculture (%)

R (p-value): Pearson=0.28 (0.001); Spearman=0.52 (0.000)
No significant correlations have been observed for fecal indicator bacteria (total coliform, E. coli and Enterococcus) with developed %, structures and other impervious surfaces YET.
E. coli versus Enterococcus

R (p-value): Pearson=0.40 (0.000); Spearman=0.7 (0.000)

Regression Equation:

\[\text{valu1} = 227.5 + 1.124 \times \text{valu2} \]
Potential Sources

- Waste water treatment plants: sewer breaks, sewer overflows, and sewer misconnections
- On-site septic systems
- Human feces
- Livestock
- Pet waste and wildlife
- Storm runoff
Three molecular source tracking methods at Stroud: ITS-DGGE, community fingerprinting/sequencing, DNA-based host-specific PCR approach

Method presented here: bacterial host-specific genes (e.g., *Bacteroides* sp. 16S rRNA gene sequences) qPCR approach
Relative abundance of signal normalized by DNA quantity

- Human
- Human
- Cow
- All bovine

Species:
- HF183
- HumM2
- CowM2
- BacB2590
Summary

• Most sites had *E. coli* and *Enterococcus* concentrations that greatly exceeded EPA/PA DEP criteria.

• Total coliform, *E. coli*, and *Enterococcus* concentrations were highest in headwater streams but “diluted out” at downstream sites.

• Moderate/strong relationships with watershed size and land cover (e.g. forest%, agriculture% etc.), but no correlations with developed% have been observed.

• Source tracking is necessary to elucidate potential/probable sources of fecal contamination.
Future perspectives

- Why are the counts so high for both *E. coli* and *Entero* during the summer? Where are they coming from?

- What caused high variations? temperature, land uses, local sources, wildlife?

- Are *E. coli* and *Entero* good indicators for headwaters? Microbiomes in water column and on streambeds?

- How long can FIB survive/travel through the watershed?
Key: continuous monitoring and more data/work!

Thank you!
2012 EPA Recommended Water Quality Criteria (RWQC)

A 30-day period geometric mean

<table>
<thead>
<tr>
<th>Criteria Elements</th>
<th>Option 1</th>
<th></th>
<th>Option 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est. illness rate = 36/1,000</td>
<td>≤10% Threshold Value (CFUs/100 ml)</td>
<td>Est. illness rate = 32/1,000</td>
<td>≤10% Threshold Value (CFUs/100 ml)</td>
</tr>
<tr>
<td>Indicator</td>
<td>Geometric Mean (CFUs/100 ml)</td>
<td>Geometric Mean (CFUs/100 ml)</td>
<td>Geometric Mean (CFUs/100 ml)</td>
<td>Geometric Mean (CFUs/100 ml)</td>
</tr>
<tr>
<td>Enterococci (marine and fresh)</td>
<td>35</td>
<td>130</td>
<td>30</td>
<td>110</td>
</tr>
<tr>
<td>E. coli (fresh)</td>
<td>126</td>
<td>410</td>
<td>100</td>
<td>320</td>
</tr>
</tbody>
</table>

PA DEP Recommendation
For recreational contact season (1 May – 30 Sept)