The Search for Good Mixing & Water Quality

Tom Caulfield
Commercial Development Manager
UGSI Solutions
Chloramines are used in about a third of municipal water systems, provide longer protection in distribution systems, and are less prone to encourage DBP formation

\[
\text{NH}_3 + \text{OCl}^- \leftrightarrow \text{NH}_2\text{Cl} + \text{HO}^-
\]

Monochloramine is formed by the reaction of chlorine and ammonia with a chlorine atom substituting for one of the three ammonia hydrogen atoms.
There are three “chloramine” variants - only one of which is desirable in a water system.

Only monochloramine is considered a suitable disinfectant.

This reaction is reversible - under certain conditions, products can decompose into reactants.
Chloramine usage has been problematic due to difficulty in accurately controlling ammonia and chlorine dosage in a dynamic distribution system.

- Introduction of ammonia can lead to nitrification as it is a nutrient to AOB’s.
- Over-chlorination can create chloramine variants which lead to taste and odor problems in drinking water (dichloramine and trichloramine).
- Low residual levels can also lead to costly mitigation efforts such as:
 - Chlorine burns
 - Line flushing
 - Tank dumping
 - Hydraulic acrobatics

Ammonia Oxidizing Bacteria (AOB)
In a distribution system, chloramine levels are challenged by a number of factors:

- Temperature stratification in tanks
- Chemical stratification in tanks
- Multiple water source compatibility
 - Surface, ground, purchased
- Distribution pipeline conditions
 - Unlined cast iron, biofilm buildup
- Water aging in tanks and pipelines

Changes in constituent ratios over time (Chlorine & Ammonia)
Chloramine Breakpoint Curve: Know where you are on the curve
Temperature & Chemical stratification in tanks:

Properly sized active tank mixing eliminates tank stratification
Effective disinfectant residual control completely eliminates the threat of nitrification

Before: August-October (4) tank nitrification events as water temperature remained high

After: August-October next year with residual control - steady 3.3ppm residual through “nitrification season”
Multiple water source compatibility:

- **Surface water sources**
 - Have warmer water temperatures during summer
 - Varying water quality

- **Ground water sources**
 - Have constant cooler water temperatures
 - More constant water quality

- **Purchased water sources**
 - Can be highly variable water quality
 - Completely dependent upon the supplier of the water
Distribution pipeline conditions:

- Unlined cast iron pipes
 - Create chlorine demand
 - Provide a perfect environment for biofilm growth
 - Inhibit flushing efforts due to decreased ID
- Oversized water mains
 - Creates horizontal storage tankage
 - Increases water age - aids in residual loss
 - Decreases water velocities - allows biofilm growth
 - Could inhibit flushing efforts due to large flow required for scouring velocities
- Distribution systems with limited pipe replacement programs
Water aging in tanks and pipelines

- Storage tanks were designed for:
 - Hydraulic pressure for the system
 - Fire suppression requirement
 - Future development - 15 to 30 years
 - Emergency reserve
- Storage tanks were NOT designed for:
 - Water quality
 - Rapid turnover
 - Minimizing water age

- Examples:
 - Standpipes vs. elevated storage
 - Small operating ranges for water levels in order to maintain pressure
 - Common inlet/outlet pipes
 - Large unused volumes of water
Conclusions

- Powerful & continuous mixing is key to make informed process decisions
- Knowing your tank’s hydraulics helps understand the problem
- In-tank chemical dosing allows for continuous water quality adjustment

Tank Cl₂ residual taken June 13th, 2017
- Ambient air temp 95°F
- Inlet Cl₂ ≈ 1.5 mg/L

Tom Caulfield
UGSI Solutions
215-882-0866
Tcaulfield@ugsicorp.com