

Naval Support Activity Annapolis (NSAA)
Water Reduction and Conservation

Andrew Hood, PE, Director of Engineering

Water Reduction & Conservation Opportunity

- Plant design capacity of 2.3 Million Gallons per Day (MGD)
- One MGD potable water being supplied
- Potable water to the US Naval Academy
- Iron-oxide sludge with continuous backwash sand filters
- Sand filters backwash 380,000 gallons per day at design flow (up to 38% of total flow)
- Potential \$380,000 savings in discharge to sanitary sewer
- Potential \$220,000 savings in sludge disposal costs (7-9% Solids)

Existing Plant Flow Diagram

Continuously Backwashed Sand Filters

Site Overview

Reject compartment (H) Influent pipe (A) Reject pipe (L) Top of airlift pipe (G) Filtrate weir (J) Reject weir (K) Effluent pipe (E) Sand washer (I) **Upward flowing** filtrate (M) Downward moving sand bed (D) Airlift housing (N) Influent annulars (B) Feed radials (C) Bottom of airlift pipe (F)

Sand Filters

Project Timeline

- Plant study completed by AH Environmental in July 2008
- Original Request for Proposals late 2008
- JCC/Keystone submitted Proposal March 2009:
 - Sludge Holding Tank
 - Centrifuge
 - Conveyor and Sludge Dumpsters
- April 2009 JCC/Keystone presented to NSAA why we choose a centrifuge
- AECOM Completed Study in May 2011 with revisions:
 - Gravity Thickener Addition
 - Lamella Plate Settlers
 - Two (2) Centrifuges
 - Sludge Truck for Disposal
- New Request for Proposals Issued October 2011
- JCC/Keystone submitted new Proposal November 2011
- Contracted Awarded March 2013
- Project to be Completed June 2016

Request for Proposals - 2011

- Energy Conservation Measure type project
- Design-Build Project bid by Constellation Energy
- Project entailed sediment removal in the backwash and recycling the water as raw water

RFP Type

- Original (2009) proposal provided minimal information (performance based)
- RFP was the prescriptive type with design document references, 25% conceptual drawings, equipment performance information, previous project geotechnical report and general equipment specifications
- No contingency allowances were included in the proposal
- Deviation and value-engineering was not part of proposal process

Selection Process

Johnston Construction & Keystone Engineering

- Working together on previous DB projects is very beneficial.
 - Know each others roles and expectations
 - Trust has already been developed
 - Better opportunity to improve DB delivery based on past experience through completed projects
 - Demonstrating this experience is usually required in RFP and is typically assigned a relatively high scoring value
 - Working together on previous <u>DBB</u> projects is helpful experience also

Contractor/Engineer Team Development

- Due to our prior successful design build experience Johnston Construction Company and Keystone Engineering Group, were selected for the project
- Our past experience in design-build projects made team development a simple process
- JCC took the lead due to bonding requirements
- Communication procedures and assignments were identified at the project onset

Proposed Plant Flow Diagram

Timeline Photo

Residuals Settling

Vertical Parallel Plate Clarifiers

Sedimentation and flotation / Settling Zone (Optional) Flash and Flocculation Tank Modular Laminar Plates

Sludge Removal

Effluent

Influent

Gravity Thickener

Centrifuge

Installed Lamella Clarifiers

Gravity Thickeners

GEA Centrifuges

Additional Improvements

- SCADA system upgrades
- New second generator for new electrical loads
- New VFDs and premium rated motors for three remote well pumps

Initial Project Results

- Discharge to the sanitary sewer is 0 GPD now
- Percent solids has increased from 7-9% to 34-39% reducing disposal costs significantly

Projected Cost Savings

Estimated Annual Operating Costs

Permitting Phase

U.S. Naval Academy Water Treatment Plant

- New Federal guidelines required for full NSF compliance
- New MDE guidelines required all outdoor open top tanks to be covered
- Erosion and Sedimentation Control permitting delayed project

All communication to the regulatory agencies was required to go

through NAVFAC

Jar Testing

- Jar testing was completed to identify the best product for dewatering
- Anticipated percent solids much higher than anticipated

Lessons Learned

- Sludge Pump needs screening/grinding or macerator
- Agency regulations changes between bidding and contract award created challenges
- Direct contact between Design-Builder and Regulatory would have been beneficial
- Design engineer learned valuable lessons by managing the construction process
- Long lead projects can happen, 8-years from initial conception to project completion

Questions?

• Andrew C. Hood, PE, Director of Engineering

