THE McCAYSVILLE STORY:
HOW TO REHABILITATE A FILTER IN SEVEN DAYS

Prepared and Presented by Hollie Scott of AWI
YOUR MISSION (SHOULD YOU DECIDE TO ACCEPT IT) IS:

- Retrofit filter underdrains into two existing filters
- Gain head space in the filters for a more effective media selection
- Minimize the potential for filter underdrain failure
- Insure that the filter underdrain laterals can quickly be removed and reinstalled in case there are any hiccups (there were)
- Make provision for future use of air scour to improve filter performance
- Do it all in seven days
REASONS FOR UPGRADING FILTERS

- Improve filter performance with a better media selection (greater media depth and an upgraded media selection)
 - Lower treated water turbidities
 - Reduced disinfection by-products precursors
 - Better control during adverse conditions (turbidity spikes, algal blooms, etc.)
- Improve backwash performance to maintain media performance long term
- Prevent media migration into the underdrain system
- Improved conservation of water through increased filter run times or achieving proper filter cleaning at lower overall backwash rates
- Eliminate the risk of failure at an inopportune time
- Improve the maintainability of the filters
THE BACKGROUND AT MCCAYSVILLE

- The existing plant was built in 1981
- The peak capacity at McCaysville is 1 million gallons per day
- There are two (2) filters
- The filter dimensions are 12’ x 15’
- The deteriorated underdrains being replaced are clay tile blocks
- Stevenson & Palmer Engineers directed the upgrade
- Critical production needs dictated that each filter underdrain upgrade be accomplished within a very tight time window
- The job was to be completed in seven days which ultimately included only roughly three full work days
The Steps in Upgrading Filter Underdrains

- Remove the media from the filter
- Demolish the existing filter underdrains
- Clean and prepare the filter box
- Backwash to clean the piping and gullet
- Backwash again
- Pour grout strips around the gullet
- Install the filter underdrains
- Load new media
- Place the filter in operation
THE MCCAYSVILLE TIMELINE

Start/Finish

Problem Solving Day

Rest Day

1. **Go, start the rehab**
2. **Day 1 – removal of media and demo**
3. **Day 2 – chemical leak shuts down the rehab**
4. **Day 3 – filter prep, discover as-built problem**
5. **Day 4 – get new orifice plates, pour grout strips**
6. **Day 5 – filter underdrain installation**
7. **Day 6 – Sunday, you have to rest sometime**
8. **Day 7 – load media and prepare for operation**
Flush the Backwash Circuit Before Installation Begins
THEN FLUSH IT AGAIN

- Here’s why

- You would be amazed at what gets thrown into filters during construction

- The most common form of catastrophic failure in filters is backwashing material (to put it nicely) into the back side of the underdrains
 - Can happen with construction debris
 - Often happens when deteriorating grout allows media into the underdrain and clearwell
START WITH A CLEAN FILTER — DEMOLITION HAS BEEN COMPLETED

Needs Grout Strips for Sealing

Needs an End Plug and Grout Strip to Seal the End
Pour the Grout Leveling Strips

- Shoot the elevation of the existing floor to determine the height of the leveling strips
- Install forms to contain the grout and set the proper elevation
- Pour grout within the forms
THIS IS WHAT YOU GET
EVERY ONCE IN A WHILE DISASTER STRIKES

- Surprise, surprise – the as-built drawings didn’t match reality
- The filter gullet dimensions were different than shown
- Why is this important?
 - The cross-sectional area of the gullet determines the velocity of flow in the gullet
 - If the velocity changes, the rate of flow into the filter laterals will change
 - Normally, this is accounted for by varying the size of the primary orifices that control flow to the laterals
 - If the cross-sectional area of the gullet changes then the rate of flow to the laterals will be different than the design for the filter
 - Result – uneven distribution of backwash flow, poor filter cleaning, and potentially short circuiting through the filter and/or mudballing

- What do we do now???
Fortunately, this Isn’t Our First Rodeo – A Few Studs Can Come in Handy

- Gullet dimensions have been wrong before
- The primary orifice in each lateral where the lateral spans the gullet is made with studs to attach new orifice plates just in case

- The call went out for new orifice plates and they were resized immediately
- New orifice plates were manufactured that afternoon and airfreighted out for arrival in McCaysville the next morning
- New orifice plates were attached to the studs – the McCaysville filter rehab remained on schedule
LATERAL INSTALLATION

- Filter underdrain laterals were custom designed specifically for the McCaysville filters.
- The primary orifices located on the under side of the laterals vary in size for each lateral down the length of the gullet - key for good distribution.
- Because of the varying primary orifice sizes laterals have to be installed in numerical order starting with the #1 lateral at the backwash inlet.
INSTALLING LATERAL #1
REMAINING LATERALS EXCEPT THE LAST ONE

- Laterals #2 through the next to last one are installed in order and bolted together at the seal plate connection flange
- Laterals are shimmed at the grout leveling strips
LAST LATERAL INSTALLATION

- In between each lateral adjacent to the grout seal strip anchors are installed to a minimum embed depth of 4½ inches
ANCHORS INSTALLED

- The last lateral is installed using the previously poured 4 inch end plug opposite the backwash inlet
Here is what McCaysville looked like
THE MCCAYSVILLE GULLET AND FILTER UNDERDRAIN LATERALS
That’s how McCaysville Grubbbed a Filter in Seven Days!

Mission Accomplished!
QUESTIONS? COMMENTS? WHAT DO YOU THINK?