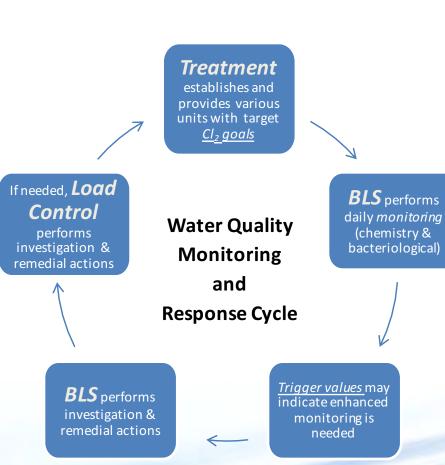
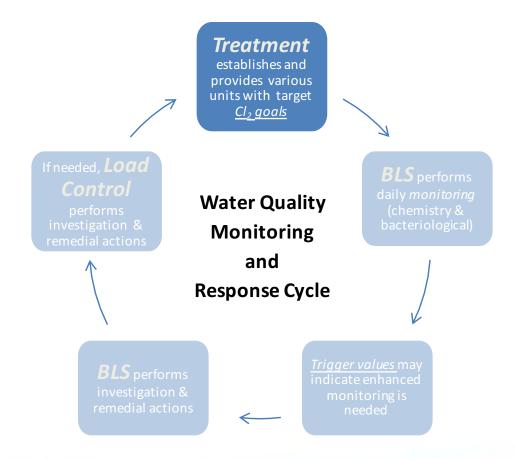
Operational Goals and Putting Them Into Practice How Philadelphia Water is Making Use of Available Tools

Workshop on the Science of Disinfectant Residual Mechanicsburg, PA November 24, 2015



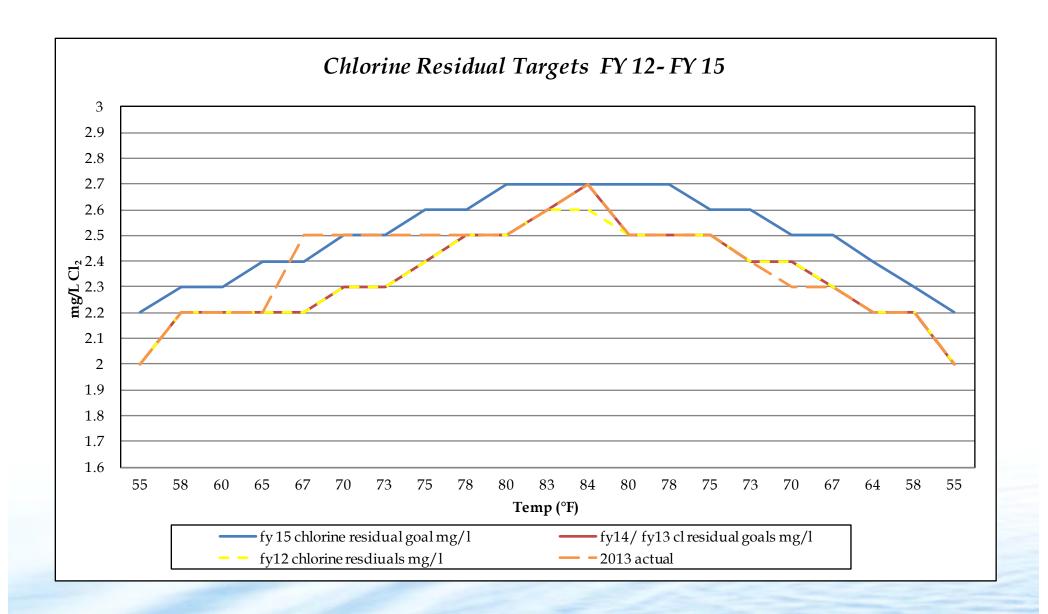
Agenda

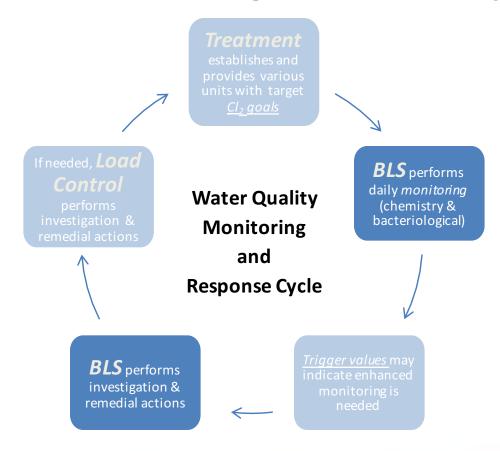

- Response to Declining Water Quality
 - > Treatment
 - Bureau of Laboratory Services (BLS)
 - Load Control
- Case studies
- Findings & Conclusions

Response to Declining Water Quality

- Continual, cyclical effort among various Philadelphia Water units:
 - > Treatment
 - Seasonal Cl₂ progressions
 - > BLS
 - WQ monitoring (routine and online)
 - Trigger levels
 - Premise & Hydrant Investigations
 - > Load Control
 - Hydraulic Investigations & remedial actions
 - Flushing, valving, and water movement operations

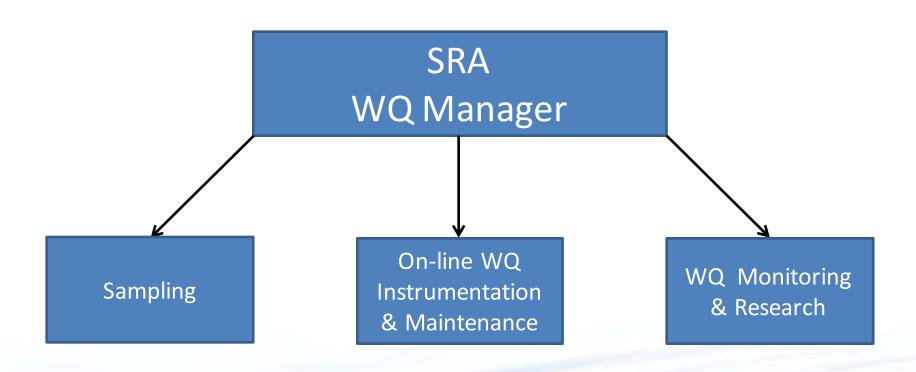
Response to Declining Water Quality – Treatment


- Continual, cyclical effort among various Philadelphia Water units:
 - > Treatment provides seasonal Cl₂ progressions, typically dependent on:
 - Temperature (as water temps. ↑, target Cl2 ↑'s)
 - Operational changes
 - Water age, system demands
 - District trends

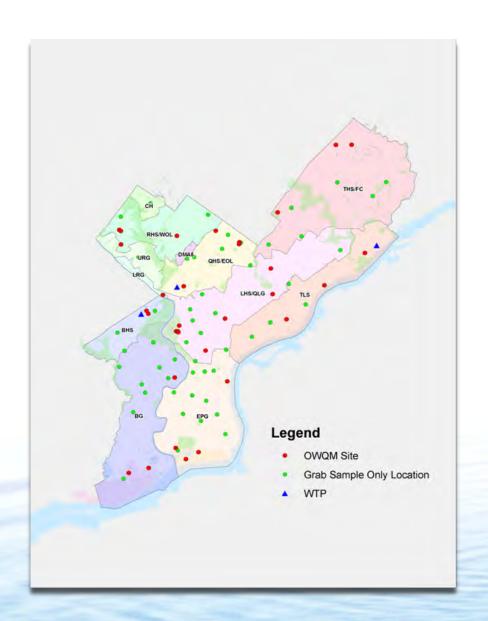

2014 (2014 Chlorine Residual Targets- Water Temperature Dependent						
Distribution Storage Influent mg/l Goal	Entry Point mg/l Goal	Water Temp Distribution Storage online	Storage Effluent Online TCL mg/l Goal≥1.50 mg/l	Pressure District 13 Influent Online TCL mg/l Goal ≥ 1.00 mg/l			
2	2.2	56F/13.3 C	Goure 1.50 mgr	Gour = 1.00 mg/			
2.2	2.2	64F/17.7C					
2.3	2.3	69F/ 20.6 C					
2.4	2.4	74F/23.3 C					
2.5	2.5*	78F/ 25.6 C					
2.6	2.6	81F/ 27.2 C					
2.7	2.7	84F/ 29.4 C					

Note: Increased Residual Goal to 2.5 on June 27, 2014 78 F

2015 C	2015 Chlorine Residual Targets- Water Temperature Dependent						
Distribution Storage Influent mg/l Goal	Entry Point mg/l Goal	Water Temp Distribution Storage online	Storage Effluent Online TCL mg/l Goal ≥ 1.50 mg/l	Pressure District 13 Influent Online TCL mg/l Goal ≥ 1.00 mg/l			
2	2.2	50 F/13.3 C		Gour 2 1.00 mg r			
2.2	2.2	55 F/ 17.7 C					
2.3	2.3	58 F/ 20.6 C					
2.4	2.4	64 F/23.3 C					
2.5	2.5	70 F/ 25.6 C					
2.6	2.6	75 F/ 27.2 C					
2.7	2.7	80 F/ 29.4 C					
Note: Increased Residu	ual Goal to 2.5 on Jur	ne 27, 2014 78 F					



Response to Declining Water Quality – BLS


- Continual, cyclical effort among various Philadelphia Water units:
 - > BLS continually monitors various water quality parameter throughout the distribution system
 - Daily WQ monitoring (routine and on-line)
 - Establishes trigger levels for various parameters
 - Performs premise & hydrant Investigations

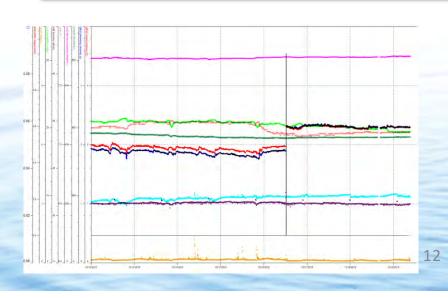
BLS Water Quality Management Scientific & Regulatory Affairs Unit (SRA)

Routine Sampling Program

- Extensive routine "grab" sampling & monitoring program
- Samples are collected from representative locations throughout the distribution system
 - > 80+ sampling locations
 - Pre-determined sampling frequency schedule
 - Procedures in place so that water samples collected represents water "from the main"

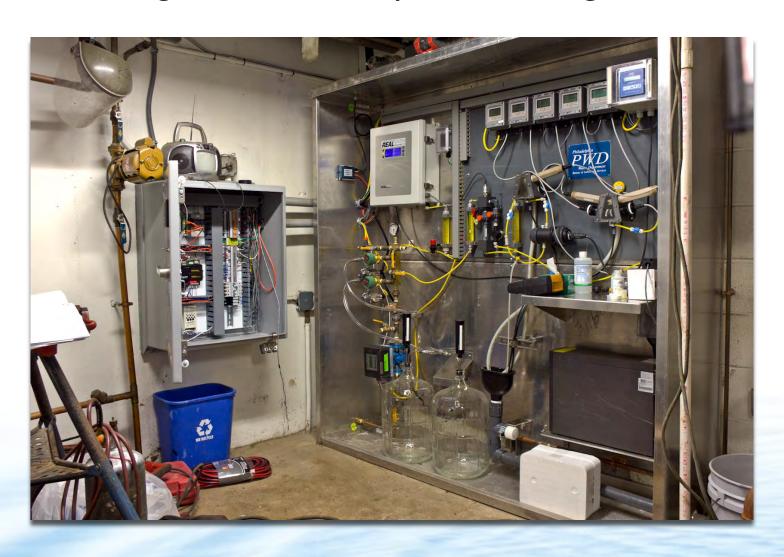
Routine Sampling Program

- Extensive routine "grab" sampling & monitoring program
- Population Served:
 1,520,001 to 1,850,000
- 360 monthly samples required for TCR
- Philadelphia Water typically collects and analyses:
 - > 500+ monthly TCR samples
 - 750+ monthly chlorine residual samples



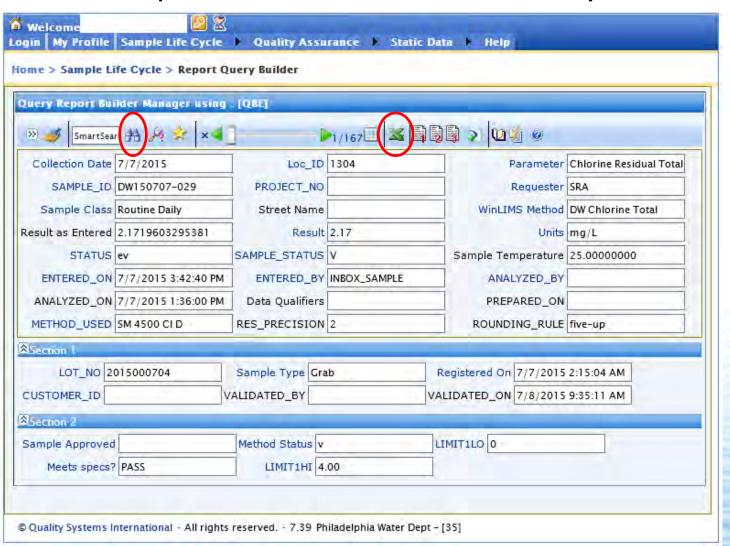
Monitor water quality in real-time to establish trends & detect anomalies

- 36 online sites
- 4 portable units
- Located at WTP effluents, pump stations, storage tanks, reservoirs, and distribution sites
- Real-time 2 minute data transmitted
- Multiple sensors
 - All sites Cl2, conductivity, pH,
 ORP, pressure, temperature,
 turbidity
 - > Select sites flow, UV 254

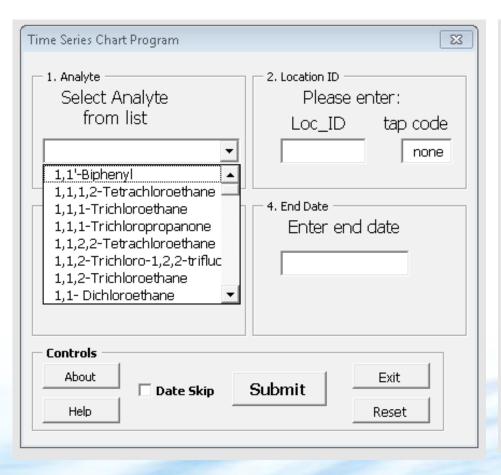


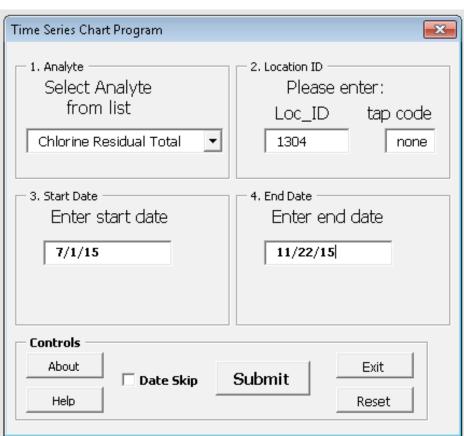
Philadelphia Water Facility Water Quality Monitoring Panel

Public Building Water Quality Monitoring Panel

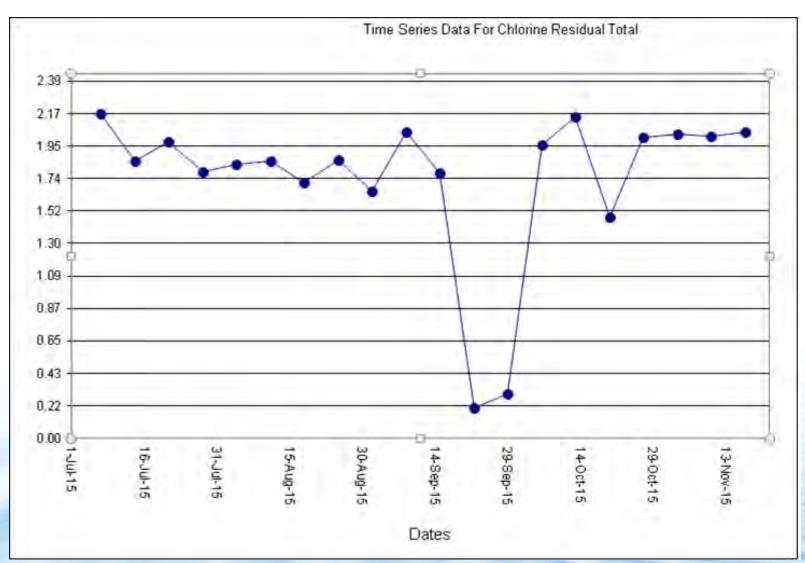

Privately Owned Building Water Quality Monitoring Panel

How Are Data Generated From These Processes Managed & Utilized?


Data Management - LIMS

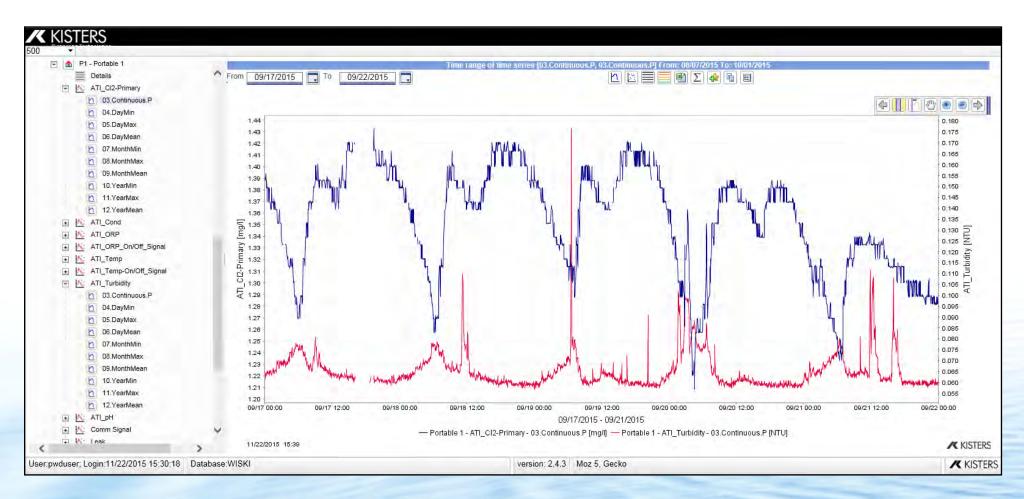

- <u>Laboratory Information Management System houses all</u> analytical testing and grab sample results
 - > data can be exported to excel for further analysis

Data Management – Time Series Program


- Microsoft VBA program developed by BLS IT
 - > Extracts analytical information from LIMS and displays via time series

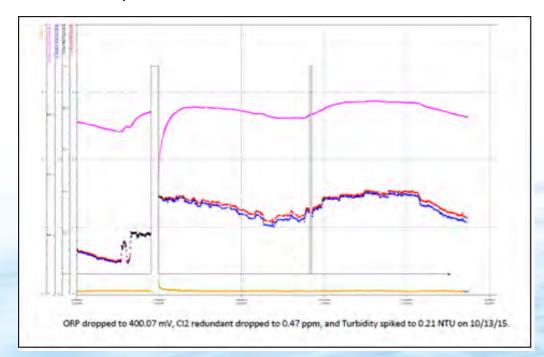
Data Management – Time Series Program

- Microsoft VBA program developed by BLS IT
 - > Extracts analytical information from LIMS and displays via time series


Data Management – Time Series Program

- Microsoft VBA program developed by BLS IT
 - > Pulls analytical information from LIMS and displays via time series

4	Α	В	С	D	Е	F	G
1	SAMPLE_ID	DATE1	NRESULT		PA_NAME	SRESULT	PARAM_UNITS
2	DW150707-029	7/7/2015	2.17		Chlorine Res	idual Total	mg/L
3	DW150714-029	7/14/2015	1.85		Chlorine Res	idual Total	mg/L
4	DW150721-029	7/21/2015	1.98		Chlorine Res	idual Total	mg/L
5	DW150728-029	7/28/2015	1.78		Chlorine Res	idual Total	mg/L
6	DW150804-029	8/4/2015	1.83		Chlorine Res	idual Total	mg/L
7	DW150811-029	8/11/2015	1.85		Chlorine Res	idual Total	mg/L
8	DW150818-029	8/18/2015	1.71		Chlorine Res	idual Total	mg/L
9	DW150825-029	8/25/2015	1.86		Chlorine Res	idual Total	mg/L
10	DW150901-029	9/1/2015	1.65		Chlorine Res	idual Total	mg/L
11	DW150908-029	9/8/2015	2.05		Chlorine Res	idual Total	mg/L
12	DW150915-029	9/15/2015	1.77		Chlorine Res	idual Total	mg/L
13	DW150922-029	9/22/2015	0.20		Chlorine Res	idual Total	mg/L
14	DW150929-029	9/29/2015	0.30		Chlorine Res	idual Total	mg/L
15	DW151006-029	10/6/2015	1.96		Chlorine Res	idual Total	mg/L
16	DW151013-029	10/13/2015	2.15		Chlorine Res	idual Total	mg/L
17	DW151020-029	10/20/2015	1.48		Chlorine Res	idual Total	mg/L
18	DW151027-029	10/27/2015	2.01		Chlorine Res	idual Total	mg/L
19	DW151103-029	11/3/2015	2.03		Chlorine Res	idual Total	mg/L
20	DW151110-029	11/10/2015	2.02		Chlorine Res	idual Total	mg/L
21	DW151117-029	11/17/2015	2.05		Chlorine Res	idual Total	mg/L
22							
23							
24							
25							
26							


Data Management – WISKI Time Series Program

- Time Series program storing data from on-line sensors
 - > Stores data imported from SCADA, which can be exported for analysis
 - Desktop and web applications

Daily Monitoring Reports

- Reports, compiled daily summarizing any anomalous trends from on-line sensor data stored in the WISKI database
 - Allows the WQ staff to understand, in real time and historically, trends at online locations
 - Communicates to the On-line group potential maintenance may be needed
 - On-line group informs all BLS WQ staff regarding daily maintenance and updates

Below is a summary of today's alarms 10/23/2015

On-line Water Quality Monitoring

1719: Has a low primary Cl2 of 0.67 ppm, and a low redundant Cl2 of 0.74 ppm.

2502: Has a low primary Cl2 of 0.72 ppm, and a low redundant Cl2 of 0.73 ppm.

7401: Has a low redundant Cl2 of 0.90 ppm, and the primary Cl2 is 1.02 ppm.

7502: No flow

Comments:

2718: pH left offline for repairs (8/19/15).

7302: Site offline during repairs (10/19/15).

- Operational Strategy documents dictate levels of acceptable disinfectant residual within distribution and at storage locations
 - > Trigger levels may change pending minimum disinfectant residual requirements

Chlorine Residual Trigger Values (mg/L) and Response Actions					
Area	Normal Triggers Enhanced Monitoring Monitoring/Load Control Contact		S	Triggers Immediate Site Investigation/ Load Control Contact	
Distribution System (not including reservoirs, tanks, standing pipes)	≥ 1.00	< 1.00	< 0.50	< 0.20	
Reservoir/Tank/Standpipe	≥ 1.50	< 1.50	< 1.50	< 1.00	

Chlorine Residual Trigger Values (mg/L) and Response Actions					
Area	Normal	Triggers Monitoring	Triggers Enhanced Monitoring/Load Control Contact	Triggers Immediate Site Investigation/ Load Control Contact	
Distribution System (not including reservoirs, tanks, standing pipes)	≥ 1.00	< 1.00	< 0.50	< 0.20	
Reservoir/Tank/Standpipe	≥ 1.50	< 1.50	< 1.50	< 1.00	

- Voice/email notification (from Inorganic Laboratory to WQ group)
- Level of monitoring will also be based on review of on-line trends (if available), HPC data and other water quality parameters

Chlorine Residual Trigger Values (mg/L) and Response Actions					
Area	Normal	Normal Triggers Enhanced Monitoring/Load Control Contact		Triggers Immediate Site Investigation/ Load Control Contact	
Distribution System (not including reservoirs, tanks, standing pipes)	≥ 1.00	< 1.00	< 0.50	< 0.20	
Reservoir/Tank/Standpipe	≥ 1.50	< 1.50	< 1.50	< 1.00	

- Voice/email notification (from Inorganic Laboratory to WQ group)
- Distribution samples will also be analyzed for Nitrite and Ammonia
- On-line trends (if available), HPC data and other water quality parameters will be reviewed
- BLS will conduct site visit and perform local investigation
- Load Control will be notified to initiate a hydraulic investigation and/or flushing

25

Chlorine Residual Trigger Values (mg/L) and Response Actions						
Area	Normal	mal Triggers Enhanced Monitoring/Load Monitoring Control Contact		Triggers Immediate Site Investigation/ Load Control Contact		
Distribution System (not including reservoirs, tanks, standing pipes)	≥ 1.00	< 1.00	< 0.50	< 0.20		
Reservoir/Tank/Standpipe	≥ 1.50	< 1.50	< 1.50	< 1.00		

- Personal notification (from Inorganic Laboratory to WQ group)
- Distribution samples will also be analyzed for Nitrite and Ammonia
- On-line trends (if available), HPC data and other water quality parameters will be reviewed
- Immediate actions: either same day or next day site investigation and/or hydraulic investigation and/or flushing

26

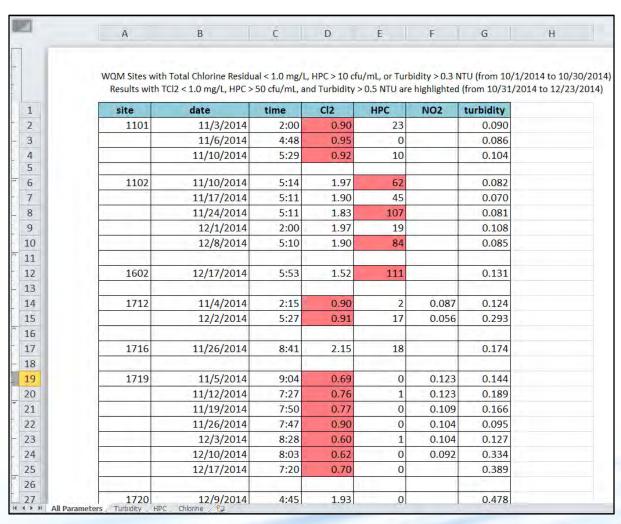
Trigger Levels Recap

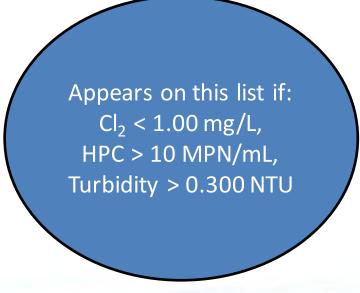
- WQ Research & Monitoring team extensively monitors all locations
- If trigger levels are exceeded, the team is notified
- Triggers Monitoring
 - > voice or e-mail communications
 - > If available, review on-line trends, HPC data and other parameters
- Triggers Enhanced Monitoring/Load Control Contact
 - > Voice or email communications
 - > Distribution samples will also be analyzed for Nitrite and Ammonia
 - > If available, review on-line trends, HPC data and other parameters
 - > BLS will conduct site visit and perform local investigation
 - Load Control will be notified to initiate a hydraulic investigation and/or flushing

Trigger Levels Recap

- Triggers Immediate Site Investigation/Load Control Contact
 - > Personal Communications
 - Distribution samples will also be analyzed for Nitrite and Ammonia
 - ➤ If available, review on-line trends, HPC data and other parameters
 - Immediate actions: either same day or next day site investigation and/or hydraulic investigation and/or flushing

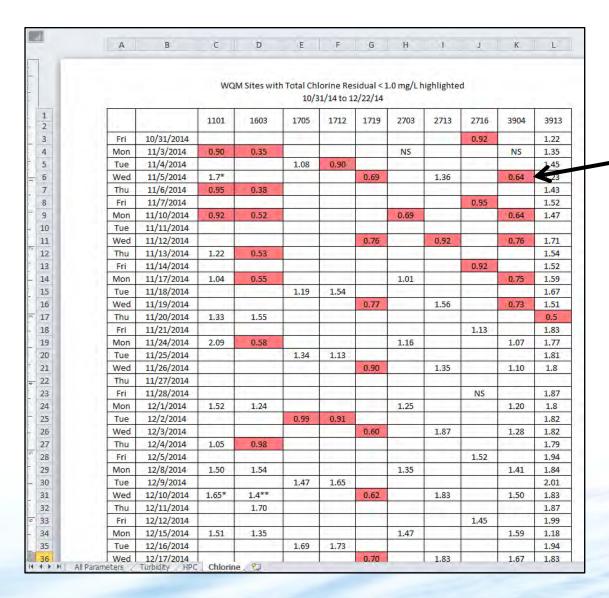
Trigger Levels – SRA WQ Group Meetings


- WQ Research & Monitoring team meets regularly to review water quality trends within the distribution system and at storage facilities
- Meetings are intended to plan for remedial actions in response to water quality deterioration
- Actions include, but are not limited to:
 - > Site investigations
 - > Adjusting sampling protocols
 - > Sample tap or dedicated sampler tap maintenance
- Meetings are more frequent during the summer season, as water quality deteriorates more rapidly in warmer weather
- Utilize Microsoft VBA Programs, incorporating defined trigger levels to identify sites exceeding triggers


Trigger Levels – Microsoft VBA Program 1

- Data from LIMS
- Makes the Distribution
 System Anomalies list if, for any location:
 - \rightarrow Total CL₂ < 1.00 mg/L
 - > HPC is detected
 - > Turbidity > 0.300 NTU
 - Pre-scheduled routine sample was not collected
 - Any parameter(s) not tested

PHILADE	LPHIA WA	TER DEP	ARTMENT -	BUREAU	OF LABORAT	ORY SERVICES
	I	ISTRIBU	TION SYS	TEM - AN	OMALIES	
Summary of Recent Instances - Low Chlorine, High HPC, or High Turbidity						
		Period cove	ered by this repo	rt: 11/17/2	2014 to	11/18/2014
	Identifying I	information			<u>Analytes</u>	
Sample Date	Loc_ID	Tap code	Disinf code	HPC	Chlorine Res	Turbidity
11/17/14	7302			4	2.03	0.078
11/17/14	1102		Р	45	1.90	0.070
11/17/14	3904			4	0.75 *	0.231
11/17/14	2703			2	1.00	0.191
11/17/14	1603		Р	0	0.55 *	0.077
11/17/14	3907		Р	7	1.56	0.101
11/18/14	1711			NS	NS	NS
11/18/14	2707		Р	7	2.02	0.416 *
11/18/14	1305		Р	2	1.75	0.091
11/18/14	1720		Р	4	2.10	0.280
11/18/14	2704		Р	2	1.50	0.138
11/18/14	7502			3	1.49	0.086
11/18/14	1716			2	2.07	0.199
			Page 1		findicates anon	nalous value

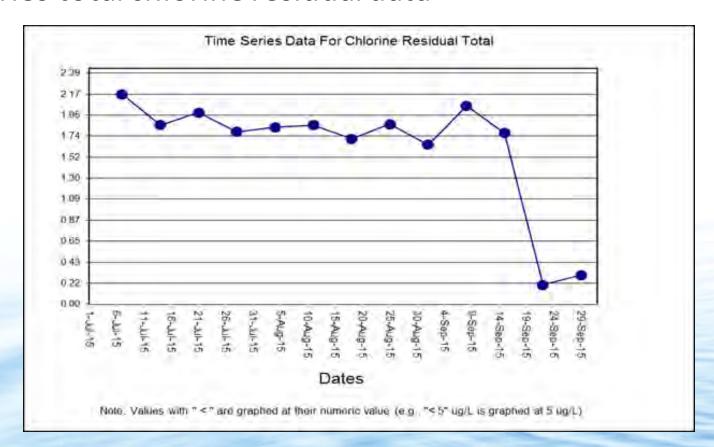

Trigger Levels – Microsoft VBA Program 2

Similar structure to VBA program 1, but provides a tabular time-series analysis for each site per parameter set on the anomalies list...

Trigger Levels – Microsoft VBA Program 2

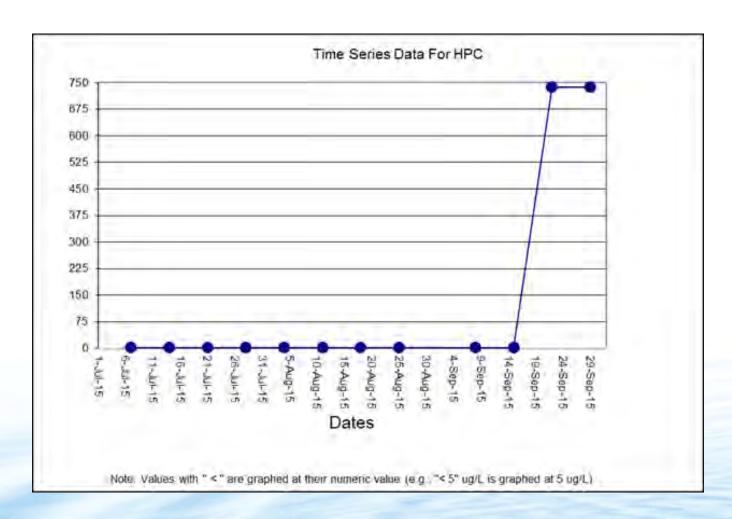
Result is highlighted if Cl₂ < 1.00 mg/L

And site specific time-series data for specific parameter(s) of concern


How Does Philadelphia Water Proceed When Trigger Levels Are Exceeded?

Through Investigation and Remedial Action

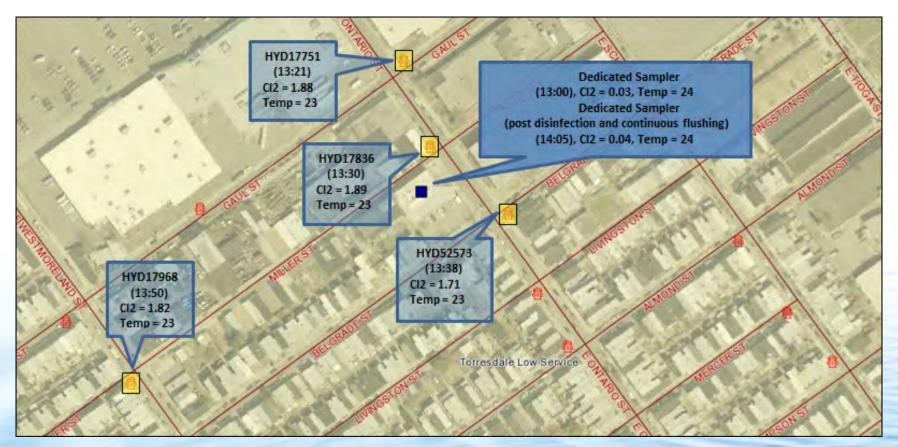
(some may be a "simple, quick remediation", others can be more prolonged or recurring)

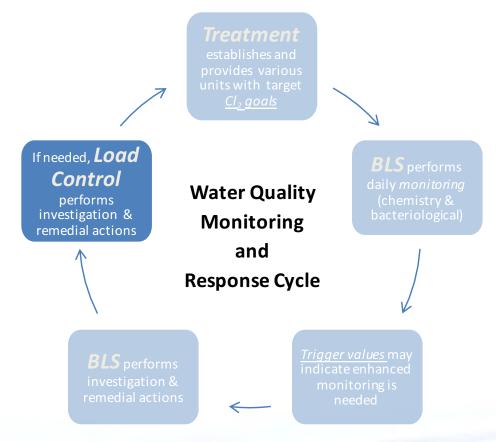

Case Study 1 – Routine Sampling Station Sudden Cl₂ drop, Significant Presence of HPC

- Anomaly programs identified routine samples collected from a routine sampling station (close to WTP district entry point) with low disinfectant residuals and elevated levels of heterotrophic bacteria
- Time series total chlorine residual data

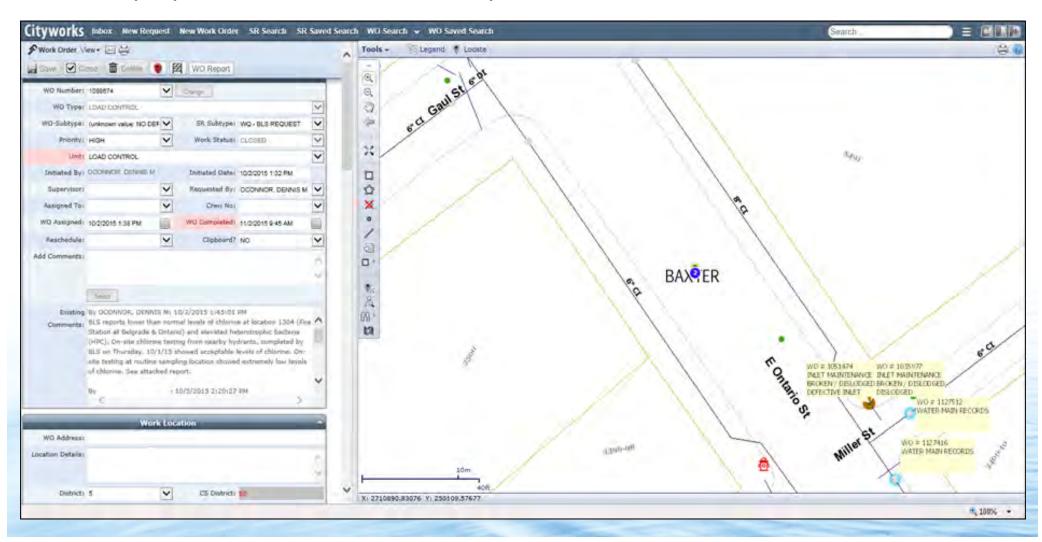


Case Study 1 – Routine Sampling Station Sudden Cl₂ drop, Significant Presence of HPC

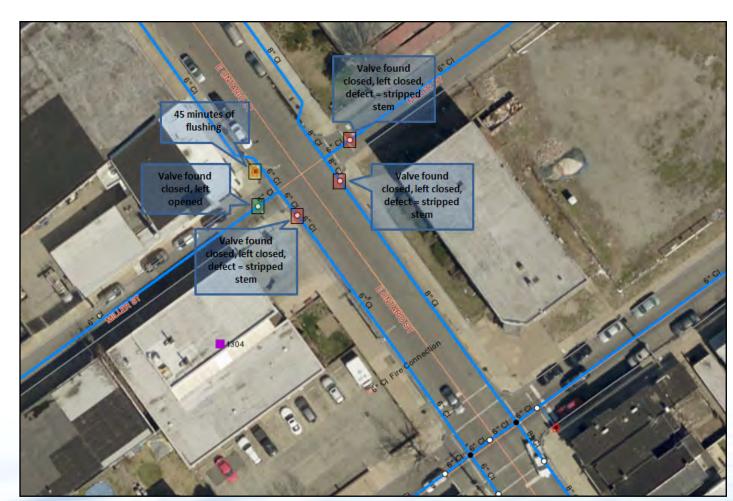

Time series HPC data


- Prompted BLS to initiate a site and hydrant investigation
 - On-site total chlorine residual analysis
- Hydrants for testing selected using Hydraulic Modeling
 - pipe and flow characteristics are incorporated into the model
 - helps identify the likely flow and direction of flow when the routine samples were collected

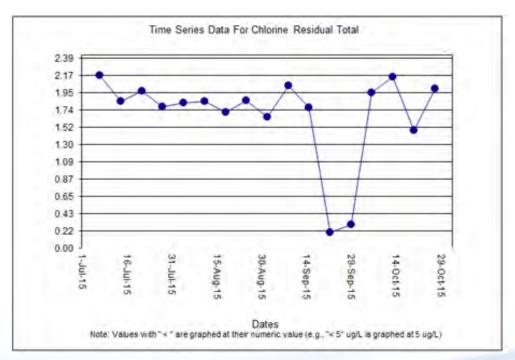
- BLS on-site investigation (total chlorine residual results)
 - > Hydrant chlorine levels showed normal total chlorine levels
 - Routine location chlorine levels were low

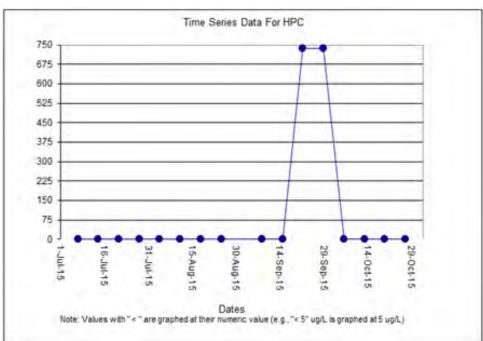


Case Study 1 – Routine Sampling Station Response to Declining Water Quality – Load Control

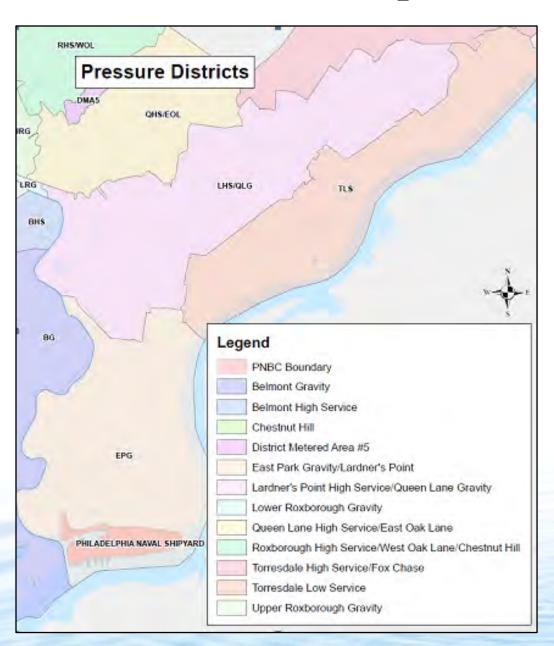

- Continual, cyclical effort among various Philadelphia Water units:
 - > Load Control
 - Hydraulic investigations & remedial actions
 - Valve inspection, valve operation, flushing and water movement operations
 - Aggressively monitors water age and flushes to promote turnover

- Work Order submitted to Load Control via CityWorks (ArcGIS)
 - > public asset work order management system
 - > displays work orders in the nearby area




Findings

- 3 broken (closed) valves, left closed
- 1 valve closed, left opened
- Remedial action
 - > ~ 1hour of flushing
- Result
 - Total chlorine
 residual at routine
 sample tap
 improved from
 0.25 to 1.1 mg/L
 - Broken valves replaced


Routine Samples following investigation and corrective action

Case Study 2 – Pressure District 13 (Low Cl₂)

- Located at the bottom of the distribution system
- Pressure District receives water from two different treatment plants
- Water systems (potable, sewer, and storm) transferred to Philadelphia Water during FY 2008-2009
 - Old, oversized water systems
 - New construction
 - Unknown piping and water main configurations

Case Study 2 – Pressure District 13 (Low Cl₂)

- Low Cl₂ throughout the Pressure District 13 prompted multiple investigations by BLS and Load Control
 - > attempt to better understand hydraulics
- WQ monitoring station (grab & online) was adjusted to better reflect "water from the main"

Case Study 2 – Pressure District 13 (Low Cl₂)

- Investigations found the following challenges in Pressure District 13:
 - Extensive network of oversized cast iron water mains
 - Some old water mains were replaced or decommissioned, some still exist
 - High Water Age
 - > Low usage
 - Nitrification events
- Remedial action (despite water main replacement)
 - Continuous seasonal flushing program
 - Typically flush > 0.5 MGD
 - Rigorous additional monitoring

2014 Chl	orine Residual T	argets- Wat	er Temperature L	Dependent
Distribution		Water Temp		Pressure District 13
Storage Influent		Distribution	Storage Effluent	Influent Online
mg/l	Entry Point mg/l	Storage	Online TCL mg/l	TCL mg/l
Goal	Goal	online	Goal≥1.50 mg/l	Goal≥1.00 mg/l
2	2.2	56F/13.3 C		
2.2	2.2	64F/ 17.7 C		
2.3	2.3	69F/ 20.6 C		
2.4	2.4	74F/23.3 C		
2.5	2.5*	78F/ 25.6 C		
2.6	2.6	81F/ 27.2 C		
2.7	2.7	84F/ 29.4 C		

Note: Increased Residual Goal to 2.5 on June 27, 2014 78 F

2015 Chl	lorine Residual T	argets- Wat	er Temperature L	Dependent
Distribution		Water Temp		Pressure District 13
Storage Influent		Distribution	Storage Effluent	Influent Online
mg/l	Entry Point mg/l	Storage	Online TCL mg/l	TCL mg/l
Goal	Goal	online	Goal≥1.50 mg/l	Goal≥1.00 mg/l
2	2.2	50 F/13.3 C		
2.2	2.2	55 F/ 17.7 C		
2.3	2.3	58 F/ 20.6 C		
2.4	2.4	64 F/23.3 C		
2.5	2.5	70 F/ 25.6 C		
2.6	2.6	75 F/ 27.2 C		
2.7	2.7	80 F/ 29.4 C		

Note: Increased Residual Goal to 2.5 on June 27, 2014 78 F

- Treatment
 establishes
 goals for
 targeted
 chlorine levels
 in Pressure
 District 13
- Load Control
 aggressively
 monitors water
 age and
 addresses this
 through
 flushing

Through the continual Water Quality Monitoring & Response Cycle...

- Various units among Philadelphia Water communicate more effectively
- Philadelphia Water has improved the response and mitigation associated with declining water quality
 - > Decreased the number of sampling locations with low CL₂
- Has progressively better met the Partnership for Safe Water Distribution System Disinfectant goal
 - Chloraminated systems, 95% of monthly samples ≥ 0.50 mg/L and ≤ 4.0 mg/L
- Although Cl₂ is the "surrogate" monitoring parameter, this monitoring and response cycle extends to other parameters like HPC, turbidity, and other water quality parameters

Pe	rcent	of Gra	b Sai	mples	< 0.5 n	ng/L CL2	2 Resid	ual - F	PWD Pa	rtne	rship C	Distri	bution S	ystem	Sites -	by Mo	nth					
% of Grab Samples < 0.5 mg/L		0.00		0.00		0.00	0.00	1	0.12		0.54		3.96	4	<mark>66</mark>	6.89		4.66		1.83		0.0
Month	Jan		Feb		<i>M</i> ar	Apr		May		Jun		Jul	Αι		Sep	0.00	Oct		Nov		Dec	
Year	Juli		, ob	<u></u>	viai	_j (pi		iviay		, an	200		<i>p</i> (0	· y	ССР		1001	!	100		300	
												•										
% of Grab Samples < 0.5 mg/L		0.00		0.00	(0.00	0.13		0.00		0.38		3.77	7.	38	6.32		4.63		0.75		0.
Month	Jan		Feb	N	Mar	Apr		May		Jun	J	Jul	Αι	ıg	Sep		Oct		Nov		Эес	
⁄ear											200	8										
						l					2 1 1						_			2 (2		_
6 of Grab Samples < 0.5 mg/L	1.	0.00		0.00		0.14	0.00		0.00		0.14		0.53		84	5.99		1.27		0.16		0.
Month	Jan		Feb		Mar	Apr		May		Jun		Jul	Αι	ıg	Sep		Oct		Nov	[L	Dec	
⁄ear											200	9										
% of Grab Samples < 0.5 mg/L		0.00		0.00		0.00	0.00		0.15		0.41		4.40	6.	15	8.85		3.49		1.76		0.
Month	Jan		Feb		Mar	Apr		May	_	Jun		Jul	Αι		Sep		Oct	_	Nov	$\overline{}$	Dec	
⁄ear											201	0		Ü				•				
				2 2 2					<u> </u>		2 - 1				10		•	4 0 0				_
% of Grab Samples < 0.5 mg/L	+.	0.00		0.00		0.00	0.00	_	0.70		0.54		1.52		<mark>19</mark>	4.21	<u> </u>	1.93		0.75		0.
Month	Jan		Feb		Mar	Apr		May		Jun		Jul	Αι	ıg	Sep		Oct	l	Nov		Dec	
<u>Year</u>											201	1										
% of Grab Samples < 0.5 mg/L		0.00		0.00	(0.13	0.14		0.52		0.99		4.11	7.	24	9.58	8	4.08		0.46		0.
Month	Jan		Feb	Ν	Mar	Apr		May		Jun	J	Jul	Αι	ıg	Sep		Oct		Nov		Оес	
⁄ear											201	2										
% of Grab Samples < 0.5 mg/L	1	0.00		0.00		0.40	0.12	J	0.00		0.00		0.99	2	29	4.75		2.48		0.91		0.
Month	Jan		Feb	$\overline{}$	Mar (Apr		May		Jun		Jul	Aı		Sep	7.70	Oct	$\overline{}$	Nov		Dec	<u> </u>
⁄ear	Jan		i CD	<u> </u>	viai	ĮΑρι		liviay		Juii	201			<u>ig</u>	ОСР		OCL	!	NOV)	
- Cai											201	<u> </u>										_
6 of Grab Samples < 0.5 mg/L		0.14		0.00	(0.00	0.00		0.00		0.00		0.98	2.	79	3.93	3	3.16		0.32		0.
<i>l</i> onth	Jan		Feb	N	√lar	Apr		May		Jun	J	Jul	Αι	ıg	Sep		Oct		Nov		Dec	
'ear											201	4										
6 of Grab Samples < 0.5 mg/L		0.00		0.00	-	0.00	0.00		0.00		0.63		2.04	2	52	3.42	,	1.34				
Month	Jan		Feb	-	Mar (Apr		May	_	Jun		Jul	2.0 4		Sep	J. 4 2	Oct		Nov	-	Dec	_
/ear	Jan		י פט		viai	ĮΛþi		Iviay		un	201		<u> </u>	g	ССР		Joct	!	40 V		<i>-</i>	

Key
> 5.0 % * Fails Partnership Goal
4.0 - 4.99 %
3.0 - 3.99 %
0.0 - 2.99 %

Questions?

Dennis O'Connor

Environmental Engineer

Philadelphia Water Department

dennis.m.oconnor@phila.gov

