

Statistical Limitations of Disinfectant Residual

Measurements

Presented by Jeffrey Rosen

President, Corona Environmental Consulting, LLC

Background

- We do not know with any certainty the concentration of disinfectant residual that is *Detectable* and *Effective*, much less what is *Protective*
- Studies clearly indicate that residual disinfectant alone is not a sufficient indicator of water quality in distribution systems or health risks for customers
- The current PA DEP minimum disinfectant residual concentration – 0.02 mg/L – is based on a method detection limit and is not appropriate as a reporting limit
- The proposed PA DEP revisions to rules on secondary disinfection are intended to ensure that data it is collecting and recording are legitimate data

Overview

Uncertainty and variability of residual measurement are critical context for minimum residual levels

- A large-scale study of residual measurement in CO waters, Hach studies & studies by PA utilities all indicate that chlorine residual is detectable around 0.09 mg/L. This level accounts for
 - Interferences
 - Bias
 - Inter-laboratory variability
- We cannot measure disinfectant residual to an accuracy of hundredths of mg/L (0.00). Regulatory minimum residual levels should reflect this reality
- Variability and uncertainty in residual concentrations necessitate distribution system operating levels significantly above a minimum residual level

Outline

- Regulations for minimum secondary disinfectant concentration
 - Current federal standards
 - States' standards
- The meaning of "detectable"
 - Agreement 0.02 mg/L is an unworkable definition of detectable
 - Outline of alternative approaches
 - Support for a detectable residual around 0.1 mg/L
- Measurement precision and implications for a defensible minimum residual level
 - Assessing compliance
 - Operating levels v. regulatory levels
- Conclusions and Discussion
 - Reinforcing the messages
 - Science and the regulatory process

Minimum disinfectant residual and its regulation

BACKGROUND

Overview of Regulations

Federal Regulations

- Must have detectable residual in 95% of samples collected each month; definition of detectable left to the states
- HPC < 500 is an alternate indication of detectable residual

States' approaches

- Minimum residual concentrations range from "detectable" without a specific definition to 1.5 mg/L
- "At all locations" v. 95% of samples
- In most cases no clear indication of the basis for States' choices (Notable exception is Colorado)

Secondary Disinfection Regulations - Nationwide

^{* =} Numerical standard < 0.2 mg/l

^{# =} Numerical standard is to total chlorine

Agreement – 0.02 mg/L is an unworkable definition of detectable Outline of alternative approaches

Support for a detectable residual around 0.15 mg/L

THE MEANING OF DETECTABLE

0.02 mg/L is a Poor Measure for Detectable Residual

- 0.02 mg/L is a MDL established in laboratory studies, not a reporting level
- Instruments report concentrations below established detection limits; analysts might take those results seriously
- Many nuances of measuring disinfectant residual result in significant uncertainty and variability
 - Inter-lab differences, inter-analyst difference, differences between instruments, interferences, and actual variability
- Even if it were real, a 0.02 mg/L residual might not indicate that there is an effective disinfectant present (interferences)

Attempts to Define Detectable

Detectable Concentration	Study or Source	Basis and notes
0.09 mg/L (free or total)	Colorado Department of Public Health and Environment	Statistical analysis of results of samples taken from distribution systems in CO. Accounts for interferences & inter-laboratory differences.
"Detectable" is a research question	Wahman and Pressman [USEPA] (2015)	Review of the literature indicates that organic chloramines may dominate at very low total chlorine concentration.
0.1 mg/L (free or total)	Hach	0.03a mg/L × 3.18b ≈ 0.1 mg/L (95th %ile estimate of the DL based on Hach studies)
0.2 mg/L (free or total)	PA DEP	0.1 mg/L → 0.2 mg/L (adds conservatism to account for interferences, additional uncertainty)

^a Hach detection limit (laboratory setting)

^b 99th percentile t-distribution statistic for 6 degrees of freedom

Colorado Department of Public Heath and Environment Residual Measurement Study

Goal: Understand the measurement errors in drinking water samples that did not have a residual

Four waters were tested:

- 1) Water from PWS
- 2) Water from PWS with dechlorinating agent
- 3) Deionized water
- Water from PWS which does not add chemical disinfectant

CO Study – Dechlorinated Samples

- Non-zero residual measured in most dechlorinated samples
- High variability among replicates for a given location
- Two locations (A and B) deemed to be problematic

CO Conclusions on "Detectable"

- Concentration data for dechlorinated samples excluding two locations (A and B) were fit to a distribution and the 99th percentile value of concentration was estimated
- Result: A measurement above 0.08 mg/L has a low probability of falsely indicating a detectable residual
- Recommendations
 - Method detection limit (MDL) = 0.09 mg/L
 - Based on the MDL and occurrence of *E. coli* and total coliforms when residual disinfectant concentration is less than 0.15 mg/L, CO selected a minimum residual of 0.2 mg/L

Assessing compliance
Operating levels v. regulatory levels

MEASUREMENT PRECISION AND IMPLICATIONS FOR A DEFENSIBLE MINIMUM RESIDUAL LEVEL ASSESSING COMPLIANCE OPERATING LEVELS V. REGULATORY LEVELS

Aqua and PW Lab Studies

Objective

- Determine variability in residual measurements to determine whether a 0.20 mg/L (two decimal places) minimum residual is supported
- Quantify uncertainty in the vicinity of the minimum disinfectant concentration

Methodology

- Replicate measurements of known concentration were performed using
 - Hach DPD Method (PW & Aqua) and
 - Amperometric Titration (only PW)
- All samples were diluted from a stock using deionized water
- Highly skilled analysts conducted measurements on standards between 0 and 0.65 mg/L

Phildelphia Water – Hach DPD Method

Relative standard deviation (RSD) (aka coefficient of variation, CV) is

standard deviation ÷ mean × 100%

% Relative Standard Deviation

Philadelphia Water – Amperometric Method

Aqua America Results-Hach DPD Method

Aqua America Results-Hach DPD Method

- The average measured chlorine concentration was
 - statistically higher than the known concentration for known concentrations between 0.06 – 0.2 mg/L
 - not statistically different from the known concentration for concentrations above 0.3 mg/L (0.3-0.65 mg/L)
- For locations retained in the CO study, the range of relative standard deviations of residual measurements was
 - 4.6% to12.7% for dechlorinated samples
 - 20% to greater than 300% for samples that were not dechlorinated
- Relative standard deviation for Aqua experiments conducted at 0.2 mg/L was 15%

Aqua and PW Results Correspond to a Best-Case Scenario...

- Very well-controlled study:
 - Laboratory grade water used for dilutions
 - Highly trained technicians
- Results provide a lower bound estimate for variability;
- Variability is likely to be higher if tests were performed by other analysts using matrix water

Operational Implications

- In order to ensure that the measured residual concentration is at least 0.2 mg/L 95% of the time, the minimum operating concentration would have to be 0.3 mg/L. Based on
 - RSD of 14% for Aqua America experiments conducted at known concentration of 0.2 mg/L
 - Assumption that standard deviation is known, results are normally distributed
- Systems will have to operate at a higher disinfectant residual to meet the standard and avoid public notifications
- Additional impacts of higher operating levels
 - Costs
 - DBP formation

False Positive Violations

Conclusions

- Studies indicate that a chlorine residual is detectable near 0.09 mg/L.
- We cannot measure disinfectant residual to an accuracy of hundredths of mg/L. Regulatory minimum residual levels should reflect this reality
- Variability and uncertainty in residual concentrations
 - necessitate distribution system operating levels significantly above a minimum residual level and
 - make misclassification (both false positives and false negatives) likely in small systems that collect few samples

Toward a Better Regulations Development Process

- Obvious that secondary disinfection science is not yet sufficiently understood
- A FACA-like process would help this and other regulation development processes

Technical Working Group (TWG)

Data Gathering and Analysis
Literature Survey
Input from EPA/AWWA
Limited Basic Research

Stakeholders

Negotiate
Reach Agreement
Raise New Questions

Improved Understanding of Secondary Disinfection as a Means of Delivering Public Health Benefit

Questions, Discussions, Acknowledgements

- Thanks to PW, PA AWWA and the PA drinking water community for their leadership on this topic
- Corona will continue to support this effort and others to develop policy for producing and delivering safe drinking water
- Jeff Rosen <u>jrosen@coronaenv.com</u>
- Questions?

EXTRA SLIDES

Uncertainty and Variability

- Estimates of uncertainty and variability in Colorado study are far in excess of the manufacturers declared variability
- Manufacturer's estimate of variability is different than real operational variability
- Tool to the right shows statistically where utilities will operate to meet the standard

Secondary Disinfection Overview

Goal: Prevent regrowth and human exposure to high doses of harmful microbes

Roles: (i) prevent conditions favoring growth (ii) kill/injure/limit organisms

CO Study Statistical Analyses: PWS Samples with Dechlorinating Agent

The Significance of Significant Digits

Type of Test	Working Range (mg/L)	Expected Precision (%)
Amperometric Titration	0.1-10	0-10
Colorimetric DPD Ferrous Titration	0.01-10	2-7
Colorimetric DPD	0.01-10	5-75

From Gordon et al. (1992). Disinfectant Residual Measurement Methods. Second Ed, AWWARF and AWWA

The Significance of Significant Digits

 Even the most sensitive methods used under the most controlled conditions cannot detect differences of 0.01 mg/L

- Rounding:
 - \square 0.15 mg/L rounds up to 0.2
 - □ 0.14 mg/L rounds down to 0.1 mg/L

