MEASUREMENT OF CHLORINE DISINFECTION

SCIENCE OF DISINFECTION RESIDUAL WORKSHOP PHILADELPHIA WATER AND PAAWWA NOVEMBER 24, 2015

Cary B. Jackson, Ph.D.

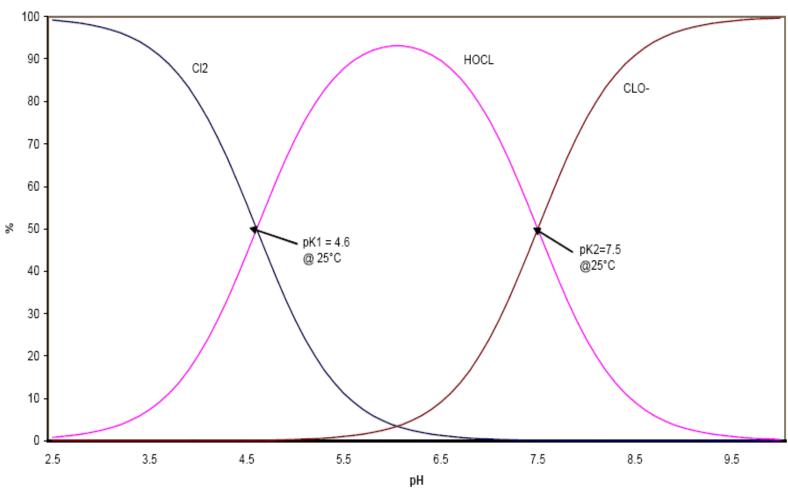
Director of Regulatory Affairs and Government Relations

CHLORINE CHEMISTRY IN DRINKING WATER SYSTEMS

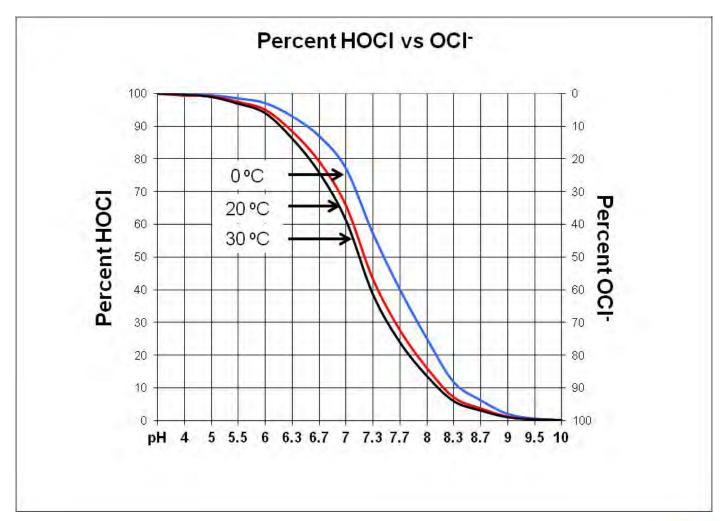
OVERVIEW OF CHLORINE CHEMISTRY IN WATER TREATMENT

 When chlorine is added to water at a pH greater than 4, hypochlorous acid (HOCl) is formed as illustrated by the following empirical equation:

$$Cl_2 + H_2O$$
 HOCl + H⁺ + Cl⁻


 As the pH increases above 4, the hypochlorous acid will dissociate to form the hypochlorite ion (OCl⁻):

• Cl₂, HOCl, and OCl⁻ is known as "Free Available Chlorine" (FC)

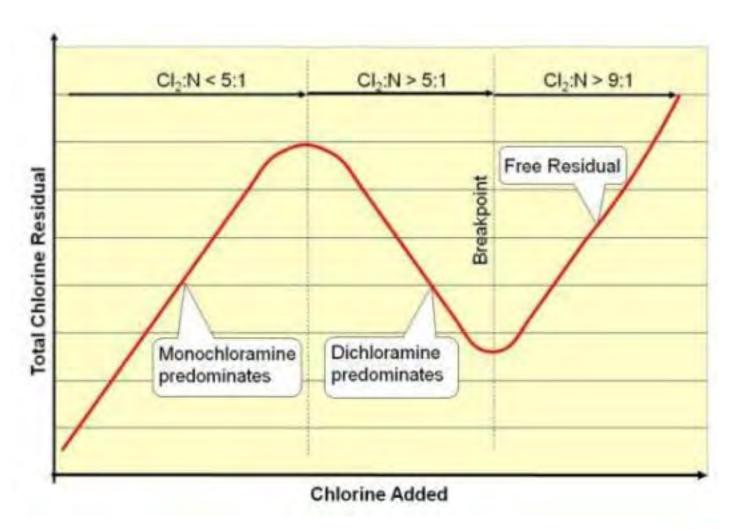

DISSOCIATION OF CHLORINE AS A FUNCTION OF PH

Dissociation curve

PERCENT OF HOCL AND OCL⁻ AS A FUNCTION OF PH AND TEMPERATURE

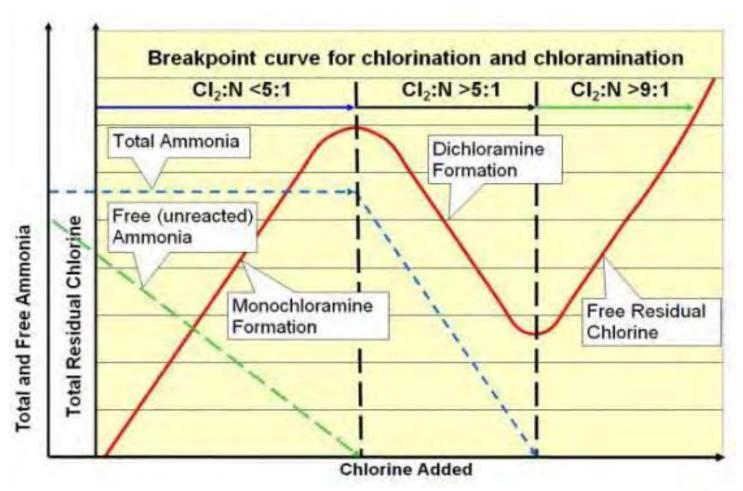
DISINFECTION VALUE OF FREE CHLORINE SPECIES

- Hypochlorous acid (HOCl)
 - 1.4 electron volts (ev)
- Hypochlorite ion (OCl⁻)
 - 0.9 electron volts (ev)



REACTION OF CHLORINE WITH NITROGEN COMPOUNDS

- $HOCl + NH_3$ \longrightarrow $NH_2Cl + H_2O$ (Monochloramine)
- $HOCl + NH_2Cl \longrightarrow NHCl_2 + H_2O$ (Dichloramine)
- HOCl + NHCl₂ NCl₃ + H₂O (Trichloramine)
- HOCl + NCl₃
 HOCl + * (Destruction of NCl₃)
- Mono, di, tri, and organic chloramines are known as Total Chlorine (TC)



DISTRIBUTION AS A FUNCTION OF MOLAR RATIOS

BREAK TRHOUGH CURVE WITH AMMONIA

DISINFECTION VALUE OF CHLORAMINATED SPECIES

- Monochloramine (NH₂Cl)
 - 0.81 electron volts (ev)
- Dichloramine(NHCl₂)
 - < Monochloramine</p>
- Trichloramine (NCl₃)
 - < Dichloramine</p>
- Organic chloramines
 - None

MEASUREMENT OF CHLORINE IN TREATED DRINKING WATER

TYPICAL EPA APPROVED CHLORINE CHEMISTRY MEASUREMENT TECHNOLOGIES

- DPD Colorimetry
 - Chlorine oxidizes DPD to form a pink color
 - SM 4500-CL G
- Amperometric Titration
 - Amperometric titration measures the current change as a function of titrant added
 - SM 4500-CL D & E
- Amperometric
 - Reduction of chlorine using an applied voltage followed by measurement of consumed electrons
 - EPA Method 334.0

Free and Total Chlorine Chemistry

- N, N-diethyl-p-phenylenediamine (DPD)
- Buffer
- Potassium Iodide
- Ascorbic Acid

CHLORINE METHOD SELECTION (AMPEROMETRIC)

	Method		Advantages		Disadvantages
•	EPA Method 330.1 - Online F&TC	•	Reagentless	•	Fe and Mn interferences
				•	Frequent Calibration required with gold standard
				•	Doesn't work well in unstable water (pH and temperature

CHLORINE METHOD SELECTION (DPD)

Method	Advantages	Disadvantages	
 SM4500-CL G Hach Method 8021 (FC) PF Hach Method 8167 (TC) PF 	od d	Fe and Mn interferenceWaste Stream	
• SM4500-CL G - DPD Pump F&TC	Gold Standard	Fe and Mn interferenceWaste stream	
Hach Method10260SL1000 F&T	Gold StandardPortability	Fe and Mn Interference	

CHLORINE METHOD SELECTION (INDOPHENOL)

Method	Advantages	Disadvantages
 Hach Method 10241 (Indophenol Chlorine) 	 Free from Fe and Mn interferences Equivalent to gold standard in performance 	Only for FC

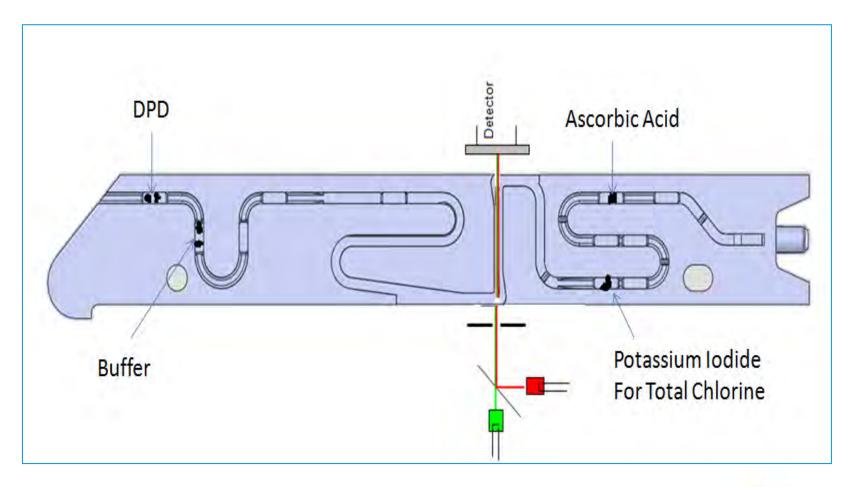
ONLINE DPD FREE AND TOTAL CHLORINE

ONLINE AMPEROMETRIC

ONLINE AMMONIA AND MONOCHLORAMINE

AMPEROMETRIC TITRATION

POCKET COLORIMETER POWDER PILLOWS



SL1000 PORTABLE PARALLEL ANALYSIS

PARALLEL PORTABLE ANALYSIS

THANK YOU

