

pennsylvania American Water

Mid-Monroe Water System: Soluble Iron and Manganese Removal via Oxidation & Filtration

Daniel Rickard, P.E. Engineering Project Manager Pennsylvania-American Water Company

Who Is American Water

We are the largest publicly traded water and wastewater utility in the United States

- Broad national footprint and strong local presence
- Services to an estimated 14 million people in more than 1,500 communities in more than 30 states and parts of Canada
- Approx. 6,700 dedicated and active employees
- Treats and delivers more than one billion gallons of water daily

Our Company

- Subsidiary of American Water Works Co. Inc.
- Roots date back to early 1800s, Incorporated in 1904
- Largest regulated water and wastewater service provider in PA
- Serving approximately 2.2 million people in 36 counties
- More than 1,000 employees
- Customer base:
 - 640,000 water customers
 - > 92% residential
 - > 7% commercial
 - > 1% industrial/other
 - 17,000 wastewater customers

Pennsylvania American Water Service Area

Serving 17 percent of the Commonwealth's population

Our Pennsylvania Infrastructure

Source of Supply

- 92% surface water
- 7% groundwater
- 1% purchased water
- 54 regulated dams
- 121 groundwater well sources

Treatment Facilities

- 36 surface water plants
 - 32 facilities received Directors Award from Partnership for Safe Water
- 6 wastewater plants

Storage & Transmission

- 279 water storage tanks
- 253 booster pumping stations

Distribution System

 10,115 miles of water and sewer pipe

Water Capacity

 193 MGD average daily delivery

Wastewater Capacity

• 11.2 MGD permitted

Mid-Monroe Water System

- Middle Smithfield Township, Monroe County, PA
- Small CWS Residential Development
- Provides water service to approximately 600 customers (1,600 projected at build-out)
- Acquired by Pennsylvania American Water in 2002 and is operated as part of our Lehman-Pike District
- System is comprised of four wells, two groundwater treatment facilities, and two storage tanks
- Wells 1&2 combine for treatment into Entry Point 102 (South)
- Wells 3&5 combine for treatment into Entry Point 105 (North).

Well	Size	Depth	Log	Date Drilled	Safe Yield	
1 (E.P. 102)	8"	300'	Sand/Gravel: 0-18' Bedrock: 18'-300'	1990	123 gpm	
2 (E.P. 102)	8"	500'	Sand/Gravel: 0-28' Bedrock: 28'-500'	1992	40 gpm	
3 (E.P. 105)	8"	753'	Sand/Gravel/Clay: 0-80' Bedrock: 80'-753'	2002	65 gpm	
5 (E.P. 105)	8"	805'	Sand/Gravel: 0-13' Bedrock: 13'-805'	2002	65 gpm	

Wells	lron (mg/l) (SMCL = 0.3 mg/l)	Manganese (mg/l) (SMCL = 0.05 mg/l)	Sulfide	рН
1&2	0.18	0.54	ND	7.9
3&5	0.10	0.076	ND	7.3

Notes:

- Fe & Mn concentrations are approximately 95% dissolved

Customer Water Quality Issues

- Fixture staining
- Fouled point-of-use water filters
- DEP SMCL exceeding levels of Mn recorded at customer's homes

PENNSYLVANIA AMERICAN WATER

Previous Approach

- Sequestering via blended polyphosphate chemical addition at both Entry Points
- System wide flushing completed twice a year
- Maximize use of Entry Point 105's better water quality, and minimize use of Entry Point 102

New Approach Needed

- Entry Point 102 needed to meet system demands
 - Declining yield from EP 105 causing service reliability issues
- Needed to remove secondary contaminants at EP 102 source to effectively meet customer expectations
 - Treatment Target: Although SMCL is 0.05 ppm, Mn concentrations of ~0.02 ppm are typically noticeable to customers
- Alternatives Analysis Completed
 - Membrane Filtration (nano, ultra, micro)
 - Ion Exchange (typically used for softening/demineralizing, and/or nitrate removal)
 - Greensand Filtration (historical precedence)
 - Pressure Filtration w/ Proprietary Media (manufactured greensand)

Oxidation-Filtration w/ Proprietary Media Selected

 Uses portion of applied disinfectant to convert dissolved Fe/Mn to insoluble metal oxides (oxidation) that is catalyzed by pre-precipitated manganese dioxide on media (filtration)

Benefits

- Small footprint
- Higher hydraulic loading rates (5-10 gpm/sf)
- Does not require long contact time
- Does not require pre-conditioning (permanganate feed, coagulants, pre-filtration, etc.)
- No brine or salt required
- Low head-loss across filters
- Low operating cost
- No clearwell storage and/or high-service booster pumping required with pressure filters

Pressure Filter Selection and Specifications

- After competitive bidding process, selected Severn-Trent Omni-Sorb[®] Media Pressure Filtration System
 - Engineered Omni-Sorb[®] Media (i.e. manufactured greensand)
 - High catalytic properties allow for activation without the need for pre-conditioning or regeneration (i.e. potassium permanganate)
 - High removal performance over wide range of influent water quality
 - Fe up to 10 ppm
 - Mn up to 5 ppm
 - H_2S up to 3 ppm
 - pH 6.2 to 8.5
 - Can withstand high differential pressures (+/- 20 psi)
 - Low operating costs
 - 8-10 year life span on media (non-hazardous when spent)
 - +/-\$2,900/year (prechlorination, media replacement, power, etc.)

Pressure Filter Selection and Specifications – Cont.

- Performance Guarantee
 Fe <0.1 ppm
 Mn <0.03 ppm
- PLC Operated

Automated backwashing via pressure differential, run-time, turbidity breakthrough, and/or regular timed intervals.

Plant Specifications

- 0.256 MGD permitted capacity
- Two 6 ft. diameter pressure vessels
 - Flow split 50/50 during normal operation (3.1 gpm/sf each filter)
- 200 psi rated operating pressure
- Pre and post filter chlorine feed
- Blended phosphate corrosion inhibitor feed (post filter)
- 1,500 ft² building footprint
- Fully automated
- 4-log disinfection of viruses achieved via 12.5% sodium hypochlorite and 60' of 36" contact main
- 22,000-gallon backwash/filter-to-waste tank

Process Control Scheme

- Facility fully monitored and controlled via RTU/PLC with touch-screen & cellular data/voice signal to regional office
- Wells
 - Level/Flow/Pressure
- Chemical Feed Systems
 - Flow Paced
- Cl₂ Residual
 - Post-Filter
 - Entry Point
- Pressure Differential
- Turbidity
- Backwash/Waste Tank & Pumps
 - Level/Flow/Pressure
- Security
 - Intrusion/Fire/Smoke/ADT

Effluent Water Quality

- Maintaining 4-log compliant Cl₂ residual through filters
 - ~2.0 ppm pre-feed —> ~1.5 ppm post filter

• Typical:

Mn (mg/l) (SMCL = 0.05)			Fe (mg/l) (SMCL = 0.3)			Color (Pt/Co)		
In	Out	Δ	In	Out	Δ	In	Out	Δ
0.54	<0.01	(0.53) 98% 1.13 lbs/d	0.18	<0.01	(0.17) 94% 0.36 lbs/d	5	0	(5)

- Typical backwash cycle (each filter):
 - 12 mins. at 400 gpm to achieve ~50% bed expansion = 4,800 gals.
 - 10 mins. filter to waste at 89 gpm = 890 gals.
 - Total of 5,690 gal x 2 filters = 11,380 gal in WW generation
- Low pressure public sewer available in system via Township Sewer Authority
- Not cost effective to discharge 100% of WW to public sewer
- So WW tank equipped with following to facilitate recycling
 - Dual Submersible Recycling Pumps (15 gpm, VFD Controlled)
 - Dual Submersible Residual Waste Pumps (15 gpm,) w/ air gap
 - Adequate volume to allow for 8 hours of settling time
 - All NSF-61 Approved Materials
- ~94% recycling achieved

CONSTRUCTION COST SUMMARY

Item	Cost
Pressure Filter System Procurement, Install, etc.	\$235,000
Site Work/Yard Piping/Security Fence	\$128,000
Structural	\$370,000
Electrical/HVAC/Plumbing	\$310,000
Pumps/Controls/Instrumentation ¹	\$120,000
Well Improvements (two wells)	\$70,000
Start-Up/Testing/Misc. Soft Costs	\$17,000
Total	\$1,250,000

¹Excluding filter system instrumentation

Lessons Learned

- Loading of media into 10' high filters options
 - Bucket Brigade/Scaffolding
 - Escalator/Skylights
- Backwash water supply
 - Finished water recommended versus raw
 - +/- 400 gpm flow may tax small system (stir up system, pressure drop, etc.)
- Backwash protocol
 - Need to vary flow/bed expansion

Low flow wash for media particulate friction to dislodge stubborn manganese dioxide build-up

High flow wash for good residual removal/flushing (w/o loss of media)

Consider air scour assembly

Wells 1&2 Treatment Facility – Exterior & Well 2

Wells 1&2 Treatment Facility – Dual Pressure Filter System

Wells 1&2 Treatment Facility – Chemical Room

Wells 1&2 Treatment Facility – Backwash Tank

Wells 1&2 Treatment Facility – Sewer Connection

Questions / Comments

