Pittsburgh Water Treatment Plant Projects

by
Jay R. Lucas, P.E.
Senior Project Manager
Who Is American Water
We are the largest publicly traded water and wastewater utility in the United States

- Broad national footprint and strong local presence
- Services to an estimated 14 million people in more than 1,500 communities in more than 30 states and parts of Canada
- Approx. 6,700 dedicated and active employees
- Treats and delivers more than one billion gallons of water daily
Our Company

- Subsidiary of American Water Works Co. Inc.
- Roots date back to early 1800s, Incorporated in 1904
- Largest regulated water and wastewater service provider in PA
- Serving approximately 2.2 million people in 36 counties
- More than 1,000 employees
- Customer base:
 - 640,000 water customers
 - 92% residential
 - 7% commercial
 - 1% industrial/other
 - 17,000 wastewater customers
Pennsylvania American Water Service Area

Serving 17 percent of the Commonwealth’s population
Pittsburgh Water Treatment Plant History

- **Beck’s Run Raw Water Pump Station**
 - Located at mile point 4.5 on the Monongahela River
 - Constructed in 1893

- **Hays Mine Filtration Plant**
 - Constructed in 1906 to treat, filter and pump river water
 - Expanded in 1923, 1936, 1952 to total capacity of 40 filters and 60 MGD; upgraded with Superpulsators in 1989

- **Hays Mine Chemical Building**
 - Constructed in 1922

- **E. H. Aldrich Water Treatment Plant**
 - Located at mile point 24.5 on the Monongahela River
 - Constructed in 1958 with 8 Aldrich Filter units and total capacity of 50 MGD
Project Overview

• $108 Million Water Treatment Plant Upgrade

• Main Focus Areas
 ▪ Replace Aging Infrastructure
 ▪ Improve Safety and Reliability
 ▪ Ensure Compliance with latest DBP Regulations
Project Overview

• Replace Aging Infrastructure
 ▪ New Beck’s Run Intake and Raw Water Pump Station (BRPS)
 ▪ New Hays Mine Chemical Building
 ▪ New Hays Mine Water Treatment Plant (WTP) High Service Pumps

• Improve Safety and Reliability
 ▪ Eliminate chlorine gas – switch to sodium hypochlorite generation
 ▪ Improved chemical handling and containment, reliable chemical feed
 ▪ Install emergency generators at BRPS, Hays Mine and Aldrich WTPs

• Ensure Compliance with Latest DBP Regulations
 ▪ Switch to chloramination at Hays Mine and Aldrich WTPs
 ▪ Reduce reliance of pre-chlorine at Hays Mine WTP
 ▪ Construct 4.5 MG Clearwell Tanks with baffles at Hays Mine WTP for increased contact time (CT)
Beck’s Run Intake

• **Old Beck’s Run Intake**
 - Two travelling screens in poor condition
 - Maintenance Intensive
 - One common chamber to old Beck’s Run Pump Station (BRPS)

• **New Beck’s Run Intake**
 - Passive Screen technology
 - Air Burst system
 - Redundancy, including twin 42” diameter raw water suction lines to new BRPS
Beck’s Run Intake – Existing Conditions
Beck’s Run Intake – Cofferdam for New Construction
Beck’s Run Intake – Raw Waterline & Screens
Beck’s Run Intake - Complete
Beck’s Run Raw Water Pump Station

• Old Beck’s Run Pump Station
 ▪ 100+ year old building with significant structural issues
 ▪ Pumps electrified in 1970, coal fired and steam powered previously
 ▪ Double stage pumping, very inefficient with high maintenance costs
 ▪ Whole facility prone to flooding
 ▪ No back-up emergency power
 ▪ 31” riveted steel raw water discharge piping

• New Beck’s Run Pump Station
 ▪ Four vertical turbine, 1,750 hp pumps, rated at 20 MGD each; plus one spare bowl assembly. Three of four pumps have Variable Frequency Drives.
 ▪ Small building footprint with pump motors and electrical gear out of flood plain
 ▪ Dual electric feeds with 2 diesel, 2,922 hp, 2.0 megawatt back-up emergency power generators capable of producing 40 MGD
 ▪ New 42” ductile iron raw water discharge piping
Beck’s Run Pump Station – New Construction
Beck’s Run Pump Station – New Header and Pumps
Beck’s Run Pump Station – Finished Station
Hays Mine Chemical Building

• Old Hays Mine Chemical Building
 - 90+ year old building with significant structural issues
 - Four stories high - poor layout for storing, feeding chemicals and chemical containment
 - Across busy street from Hays Mine WTP
 - Difficult to unload chemicals, poor chemical injection and mixing

• New Hays Mine Chemical Building
 - Addition to existing Hays Mine WTP, all new facilities in one location
 - Complete SCADA monitoring and control
 - Standardized and redundant construction with bulk tanks, day tanks, feed pumps, chemical spill containment, etc.
 - Standardized chemical fill area with automated spill overflow containment
 - All new chemical injection points with enhanced mixing
Hays Mine Chemical Building - Existing
Hays Mine Chemical Building – New Location
Hays Mine Chemical Building - Completed
Hays Mine Chemical Building – Sodium Hypochlorite
Hays Mine Chemical Building – Chemical Feed
Hays Mine High Service Pump Station (HSPS)

- **Old Hays Mine HSPS**
 - Located in existing Hays Mine WTP, seven pumps ranging from 5 to 15 MGD; only one with a VFD
 - Most of the pumps installed in 1950
 - Each pump has its own discharge meter
 - Dual electric feeds but no back-up emergency power

- **New Hays Mine HSPS**
 - Four horizontal, split case, 2000 hp pumps, rated at 20 MGD each; plus one spare impeller assembly. Three of four pumps have VFD’s
 - Common venturi metering point
 - Two surge tanks to reduce system water hammer
 - Dual electric feeds with two diesel, 3705 hp, 2.5 megawatt back-up emergency power generators capable of producing 40 MGD
Hays Mine High Service Pump Station - Overview
Hays Mine – New Clearwell Tanks with Baffles
Hays Mine High Service Pump Station - Completed
Project Summary

• Replace Aging Infrastructure
 ▪ New Beck’s Run Intake and Raw Water Pump Station
 ▪ New Hays Mine Chemical Building
 ▪ New Hays Mine WTP High Service Pumps

• Improve Safety and Reliability
 ▪ Eliminate chlorine gas
 ▪ New chemical feed facilities
 ▪ Emergency power

• Ensure Compliance with Latest DBP Regulations
 ▪ MCL for TTHM's is 80 ug/l
 ▪ Before Chloramination, TTHM ranged from 65 to 112 ug/l
 ▪ After Chloramination, TTHM ranged from 35 to 55 ug/l
Questions?

Contact: jay.lucas@amwater.com