Did You Say 36” Diameter At 275 psi?

Christopher Evans, P.E.
Aqua Pennsylvania – Neshaminy Pipeline Project

- Project Purpose
- Alignment Selection
- Design Criteria
- Standard Details
- Transient Analysis
- Cathodic Protection
- Permitting
Project Purpose

- Transmission Replacement
 - 2,600 Linear Feet
 - Existing 22” Steel
 - Corrosion Issues
 - Main Breaks
 - Existing 20” Cast Iron
 - Meet Future Demands
- Oakford, Pennsylvania
8 Surface Water Plants
70 Well Stations
100 – 140 MGD
Neshaminy Pipeline
 – 15 MGD

Southeastern Service Area Map
Project Purpose

Neshaminy Pipeline

Phase 1 - 2,600 LF
Phase 2 - 18,200 LF
Phase 3 - 20,000 LF

2013 AWWA PA Annual Conference – April 23 – 25, 2013 – Hershey, PA
Alignment Study Phase

- Special Crossings
 - Neshaminy Creek
 - CSX Railroad
 - Levee
 - 42” RCP Sewer
Alignment Study Phase

- Railroad And Stream Crossing Alternatives
 - Microtunneling
 - Horizontal Directional Drilling (HDD)
 - Pipe Jacking
 - Open Cut Trenching
- Site Geology
- Available Easements
<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Alternative</th>
<th>Total Length (feet)</th>
<th>Trenchless Length (feet)</th>
<th>Estimated Construction Cost</th>
<th>Cost / Linear Foot ($/ft)</th>
<th>Neshaminy Creek Crossing Method</th>
<th>Railroad Crossing Method</th>
<th>Levee Crossing Method</th>
<th>Raw Water Main Crossing (Y/N)</th>
<th>Finished Water Main Crossing (Y/N)</th>
<th>42" RCP Sewer Crossing Location</th>
<th>Private Property Easement (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study A</td>
<td>A</td>
<td>2,595</td>
<td>240</td>
<td>$2,191,000</td>
<td>$844</td>
<td>Micro Tunnel</td>
<td>Open Cut</td>
<td>Open Cut</td>
<td>Yes</td>
<td>Yes</td>
<td>Stream Centerline</td>
<td>No</td>
</tr>
<tr>
<td>Study B</td>
<td>B</td>
<td>3,160</td>
<td>560</td>
<td>$2,788,000</td>
<td>$882</td>
<td>Micro Tunnel</td>
<td>Jacked</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
<td>Stream Centerline</td>
<td>No</td>
</tr>
<tr>
<td>Study C-1</td>
<td>C-1</td>
<td>3,195</td>
<td>1,565</td>
<td>$5,787,000</td>
<td>$1,811</td>
<td>Micro Tunnel</td>
<td>Jacked</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
<td>Stream Centerline</td>
<td>No</td>
</tr>
<tr>
<td>Study C-2</td>
<td>C-2</td>
<td>3,175</td>
<td>1,530</td>
<td>$4,138,000</td>
<td>$1,303</td>
<td>HDD</td>
<td>Jacked</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
<td>Stream Centerline</td>
<td>No</td>
</tr>
<tr>
<td>Study D</td>
<td>D</td>
<td>2,725</td>
<td>360</td>
<td>$2,222,000</td>
<td>$815</td>
<td>Micro Tunnel</td>
<td>Open Cut</td>
<td>Jacked</td>
<td>No</td>
<td>Yes</td>
<td>Stream Centerline</td>
<td>No</td>
</tr>
</tbody>
</table>

2013 AWWA PA Annual Conference – April 23 – 25, 2013 – Hershey, PA
• Open Cut Creek Crossing
 – PADEP Approval
 – Poor Rock Geology
 • Rock Quality Designation
 – Very Low Percentage
 • Microtunnel crossing eliminated
Alignment Design Phase

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Alternative</th>
<th>Total Length (feet)</th>
<th>Trenchless Length (feet)</th>
<th>Neshaminy Creek Crossing Method</th>
<th>Railroad Crossing Method</th>
<th>Levee Crossing Method</th>
<th>Raw Water Main Crossing (Y/N)</th>
<th>Finished Water Main Crossing (Y/N)</th>
<th>42" RCP Sewer Location</th>
<th>Private Property Easement (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>D</td>
<td>2,725</td>
<td>360</td>
<td>Micro Tunnel</td>
<td>Open Cut</td>
<td>Jacked</td>
<td>No</td>
<td>Yes</td>
<td>Stream Centerline</td>
<td>No</td>
</tr>
<tr>
<td>Design</td>
<td>D</td>
<td>2,641</td>
<td>0</td>
<td>Open Cut</td>
<td>Open Cut</td>
<td>Open Cut</td>
<td>No</td>
<td>Yes</td>
<td>Stream Floodplain</td>
<td>No</td>
</tr>
<tr>
<td>Design</td>
<td>E</td>
<td>2,602</td>
<td>227</td>
<td>Open Cut</td>
<td>Jacked</td>
<td>Open Cut</td>
<td>No</td>
<td>Yes</td>
<td>Stream Floodplain</td>
<td>Yes</td>
</tr>
<tr>
<td>Design</td>
<td>F</td>
<td>2,479</td>
<td>0</td>
<td>Open Cut</td>
<td>Open Cut</td>
<td>Open Cut</td>
<td>No</td>
<td>Yes</td>
<td>Stream Floodplain</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Alignment Selection

Alternative D
Alignment Selection

Railroad Bridge Plan

• Railroad Bridge Plan
Alignment Selection

• Railroad Bridge Cross Section
Alignment Selection

- Porta-Dam
- Two Phase Crossing
Design Criteria

- **Pressure**
 - Maximum Operating Pressure = 275 psi
 - Test Factor = 1.25
 - Test Pressure = 350 psi

- **Carrier Pipe Recommendations**
 - Type 2 Laying Condition
 - 2RC Stone To Pipe Spring Line

Source: DIPRA/6-03/5M 1991
Design Criteria

- Pipe Thickness Calculations
 - HS20 Loading & Soil Depth
- Phase 1A – Inside WTP
 - Thickness Class 53
- Phase 1B – Outside WTP
 - Railroad Crossing & Levee Thickness Class 55
 - Thickness Class 53 – majority of alignment
<table>
<thead>
<tr>
<th>Wall Thickness</th>
<th>Type</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53”</td>
<td>Thickness Class 52</td>
<td></td>
</tr>
<tr>
<td>0.56”</td>
<td>Pressure Class 350</td>
<td></td>
</tr>
<tr>
<td>0.58”</td>
<td>Thickness Class 53</td>
<td>Alignment</td>
</tr>
<tr>
<td>0.68”</td>
<td>Thickness Class 55</td>
<td>Railroad & Levee Crossing</td>
</tr>
</tbody>
</table>
Design Criteria

Nomograph Draft Hydraulic Thrust Calculation

<table>
<thead>
<tr>
<th>Operating Condition</th>
<th>Pipe Pressure</th>
<th>Rounded Pressure</th>
<th>90 Degree Bend Thrust</th>
<th>45 Degree Bend Thrust</th>
<th>22.5 Degree Bend Thrust</th>
<th>11.25 Degree Bend Thrust</th>
<th>End Thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operating Pressure (MOP)</td>
<td>275 (psi)</td>
<td>275 (psi)</td>
<td>450 (kips)</td>
<td>220 (kips)</td>
<td>110 (kips)</td>
<td>56 (kips)</td>
<td>280 (kips)</td>
</tr>
<tr>
<td>Test Press. = 1.25 x MOP</td>
<td>343.75 (psi)</td>
<td>350 (psi)</td>
<td>500 (kips)</td>
<td>280 (kips)</td>
<td>140 (kips)</td>
<td>72 (kips)</td>
<td>360 (kips)</td>
</tr>
<tr>
<td>Test Press. = 1.50 x MOP</td>
<td>412.5 (psi)</td>
<td>420 (psi)</td>
<td>600 (kips)</td>
<td>325 (kips)</td>
<td>165 (kips)</td>
<td>85 (kips)</td>
<td>425 (kips)</td>
</tr>
</tbody>
</table>

Restrained Joint Pipe Required
<table>
<thead>
<tr>
<th>Vendor</th>
<th>Design Location</th>
<th>Pressure Rating</th>
<th>Proof of Design Test</th>
<th>Maximum Operating Pressure (MOP)</th>
<th>Safety Factor</th>
<th>36" Diameter Joint Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fitting</td>
<td>350</td>
<td>1050</td>
<td>275</td>
<td>3.8</td>
<td>0.5</td>
</tr>
<tr>
<td>A</td>
<td>Pipe Joint</td>
<td>350</td>
<td>700</td>
<td>275</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>Fitting</td>
<td>250</td>
<td>687.5</td>
<td>275</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>B</td>
<td>Pipe Joint</td>
<td>250</td>
<td>550</td>
<td>275</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Vendor B Lower SF For Project
Pipe Selection

- 3rd Party - Proof of Design Testing

Source: US Pipe
Pipe Selection

- Proof of Design Testing
 - US Pipe HP LOK Selected
- Material – Ductile Iron Pipe
- Joint – Fully Restrained Joint Alignment

Source: US Pipe
Air Release Assembly Upgrade

- Threaded Joint to Restrained & Flange Joint
- 2” Copper to 6” Ductile
- 2” Curb Stop to 6” FL Butterfly Valve
- Low Stack Height

Standard

Neshaminy
• **Blow Off Assembly Upgrade**
 » Mechanical Joint to Restrained & Flange Joint
 » 4” Galvanized to 6” Ductile
 » 4” MJ Gate Valve to 6” RJ Gate Valve
Standard Details

- Horizontal Valve Detail
 - PADEP Every 1500 LF
 - Air Release Assembly
 - FL x RJ Spool
 - FL Butterfly Valve (350 psi)
 - Blow Off Assembly
 - ~ 20 LF in Length
• Wet Taps
 – 22” Steel
 – 20” Cast Iron
 – Sequencing
 – “Used & Useful”
• Transfer Station
 – Plant Service Water Provide - 1050 gpm
 – Pressure Reducing Valves From 275 psi To 80 psi

2013 AWWA PA Annual Conference – April 23 – 25, 2013 – Hershey, PA
• Valve Insertions
• Construction Sequencing
Transient Analysis

- Hydraulic model transient analysis - 40,800 linear feet
Cathodic Protection

- Corrpro Companies
- Investigation
 - Soil Resistivity
 - Bacteria Corrosion
 - Stray Current
- Design
 - Polyethylene Exterior Coating

Source: Liberty Coating Company - Pritec

2013 AWWA PA Annual Conference – April 23 – 25, 2013 – Hershey, PA
• Corrpro Companies

• Design (Continued)
 – Linear Anode
 – Joint Bonding

Source: Corrpro Companies
• 6 Month Schedule

 – Pennsylvania State Programmatic General Permit 4 (PASPGP-4)
 • PADEP
 • U.S. Army Corp of Engineers
 – CSX Railroad
 – Soil Conservation District
 • Erosion & Sediment Control
 • NPDES
• Thank You Aqua Pennsylvania
 – Den Mahoney
 – Bill Zahn
 – Rob MacNamara
 – Al D'Ercole
 – Mike Staerk
 – Steve Pizzi
 – Tom Walton
Christopher A. Evans, P.E.
Associate
Hatch Mott MacDonald
The Public Ledger Building, Suite 1040
150 South Independence Mall West
Philadelphia, PA 19106
P: (215) 399-1159
F: (215) 627-2278
M: (215) 668-1746
christopher.evans@hatchmott.com