Improving 2nd Place - Two-Stage Low Pressure Membrane Systems

Samantha Kendrick Lead Water Process Engineer GE Power & Water

imagination at work

Outline

Why choose 2-stage MF/UF?

2nd Stage Design Considerations

- Membrane Selection
- Feed Water Quality
- Hydraulic Profile
- Redundancy
- System Controls
- LRV

Factors Driving High Recovery

Conserve potable water resources

High cost to discharge to sewer

- Limited land area for drying beds
- High cost per gallon of raw water

Influence of High Recovery Single Stage MF/UF

Positive Increased feed water recovery

- Less waste/ smaller downstream processes
- Fewer equipment cycles

Negative

- Longer permeation cycle
- Thicker, more compact cake layer
- Higher Before Backpulse TMP
- Increased fouling risk due to solids and coagulant dewatering

Recovery Solids Concentration vs. Time Simplified

5/

GE /

Managing the Cake Layer

Dead-end Filtration Cross-flow Filtration

Flow is perpendicular to the membrane surface

Flow is **tangential** to the membrane surface

6 / GE / 4/5/2012

Why Choose 2-Stage MF/UF?

- **Compact Footprint compared to conventional**
- **Consistent Treated Water Quality**
- **Cost effective**
- Option to discharge to clearwell directly, reducing size/cost of 1st stage system

MF/UF Backwash Waste

"Concentrated raw water":

• Suspended solids (TSS, floc, pathogens) that have been rejected by the MF/UF membrane

$$CF = \frac{1}{1-R} \text{ where } R = \text{recovery}$$

Overall CF
1st @ 90-97% \rightarrow CF = 10 - 50

Membrane Selection

Outside-in flow

Appropriate fiber packing density & module spacing Proven performance in high solids applications

Defined spatial distribution of fibers

9/ GE/ 4/5/2012

Managing the Cake Layer

Dead-end Filtration Cross-flow Filtration

Flow is perpendicular to the membrane surface

Flow is tangential to the membrane surface

10/ GE/ 4/5/2012

Effect of Filtration Mode during Turbidity Spike

Conestoga WTP – Lancaster, PA 1st Stage: 11.147 MGD, 92%, ~34 gfd 2nd Stage: 0.853 MGD, 88%, ~21 gfd Turbidity ave 10-20 NTU, max >500 NTU Coagulation for organics removal with PACI

Effect of Coagulant Dose on TMP Conestoga, PA Plant – 1st Stage

Effect of Coagulant Dose on TMP Conestoga, PA Plant – 2nd Stage

Scaling Potential

Controlling fouling layer in high solids applications requires agitation to keep solids in suspension

Aeration to agitate is common

But...

$$CO_2 \rightleftharpoons H^+ + HCO_3^- \rightleftharpoons H_2CO_3$$

pH may shift, depending on the HRT in the

Scaling Potential

Langlier Saturation Index

Scale may cause:

- Increased fouling rate
- Increased fiber damage

Solutions:

- acid/ anti-scalant addition to feed or acid maintenance cleans
- Reduce aeration frequency/duration

2-stage UF System - Hydraulics

Redundancy

Dependence of 1st stage on 2nd stage

Downtime for backwashes, MITs, cleans

System Controls

Control 2nd stage recovery or overall system recovery

Maintenance clean waste is usually not directed to 2nd stage

Operation at reduced capacity may be limited to maximum waste volume rather than overall recovery

Reduced Capacity Operation

Log Removal Value (LRV)

Equation 2.39 in MFGM for VCF of 2nd or subsequent (ith) stage

 $(Cm)_i$ = concentration of suspended solids maintained on the feed side of the membrane associated with the stage (i)

Log Removal Value (LRV)

• VCF of each stage depends on operating mode

Design Considerations

23 / GE / 4/5/2012

Interpreting Variable Feed Water Quality >700 NTU

Thornton, CO Retrofit with Swing Train

28 MGD (106 MLD) Before

50 MGD (189 MLD) After

25 / GE / 4/5/2012

Barrie WTP, ON, Canada

- 15.85 MGD
- Two Stage System
- Stage 1: ZW1000
- Stage 2: ZW500

ACH Addition

Online: May 2011

2-Stage Siphon Design

27 / GE / 4/5/2012

Thank You!

samantha.kendrick@ge.com

28 / GE / 4/5/2012