Creating a New Legacy out of the Past Membrane Retrofit of the Brandywine Filtration Plant

By Roger K. Noack, P.E.

ONE COMPANY | Many Solutions=

2012 PA Section AWWA Annual Conference

Outline of Presentation

- Background Existing Facility
- Proposed Improvements
- Historic Structure Considerations
- Summary

Overview of Existing Facilities

- Brandywine Filtration Plant 11 MGD
 - Constructed in 1917, Upgraded in 1934
 - Avg. Daily Production 5 MGD
 - Peak Daily Production 10 MGD
 - Serves Two Pressure Zones
- Water Source Brandywine Creek

Brandywine Complex

Raw Water Quality

	Units	Avg	Range			
Physical Parameters						
рН	units	7.3	6.6	-	8.5	
Alkalinity	mg/L as CaCO ₃	52	33	-	71	
Hardness	mg/L as CaCO ₃	94	58	-	122	
Temperature	°C	16	4	-	30	
Conductivity	uohms/cm	280	120	-	500	
Inorganics						
Chloride	mg/L	36	14	-	135	
Nitrate	mg/L	2.1	0.9	-	3.6	
Nitrite	mg/L	0.03	0.001	-	0.36	
Ammonia	mg/L	0.12	0.01	-	0.75	
Orthophosphate	mg/L	0.26	0.01	-	0.62	
Zinc	mg/L	0.06	0.02	- 15	0.24	
Metals						
Total Iron	mg/L	0.19	0.004	-	1.4	
Total Manganese	mg/L	0.05	0.005		0.22	
Microbiological						
Total Coliform	#/100mL	579	46	-	2419	
E. Coli	#/100mL	79	1		1120	
Heterotrophic Plate Count	#/100mL	1337	76	-	17000	
Organics						
Ultra-Violet Absorbance @ 254nm	cm ⁻¹	0.076	0.038	-	0.36	
Total Organic Carbon	mg/L	2.5	1.4	LINEX	7.7	

Brandywine Filter Plant

Finished Water Quality

Parameter	Average	Minimum	Minimum Maximum	
Alkalinity (mg/l as CaCO3)	46	29	68	
Chloride (mg/l)	55	47	106	
Conductance (umhos/c)	344	256	398	
Fluoride (mg/l)	0.92	0.22	1.40	
Iron (mg/l)	0.017	0.003	0.180	
Free chlorine (mg/l)	1.87	0.97	0.180	
Hardness (mg/l)	111	94	130	
Nitrite (mg/I)	0.0051	0.0023	0.0250	
Nitrate (mg/l)	1.9	1.3	2.5	
pH (SU)	7.2	6.5	7.8	
Phosphate (mg/l)	0.248	0.024	0.909	
TOC (mg/l)	1.30	0.79	2.87	
Turbidity (NTU)	0.057	0.039	0.102	
UV254 (cm-1)	0.024	0.012	0.084	
Zinc (mg/l)	0.188	0.031	0.640	

Project Needs

- Modernize Plant
 - Advanced Age & Deterioration
 - Operational Limitations
 - Regulatory Compliance

Chemical Feed Systems

Advanced Age & Deterioration

High Zone Pumps

Low Zone Pumps

Filter Piping in Clearwell

Project Needs

- Meet Capacity Requirements

 Minimum Capacity 6 MGD
 Peak Capacity 14 MGD
 Future Peak Capacity Up to 20

 - MGD
- Comply with SDWA
- Facilitate New Brandywine Pumping Station

Finished Water Goals

Parameter	Value
TOC Removal	> 35%
HAA5 Formation Potential (SDS)	60 µg/l
TTHM Formation Potential (SDS)	80 µg/l
Average Turbidity	0.05 NTU
Maximum Turbidity	0.10 NTU
Particle Removal Efficiency	
(2-5 μm range)	4-log
SDWA Maximum Contaminant Levels	Meet All

Proposed Process Flow Diagram

Proposed Plan

Historic Structure

Existing Structure

Demolition in Filter Building

Planned Improvements

Finished Water Pumping

Membrane System in Filter Building

Membrane System in Filter Building

Protection of Existing Structure

- No good drawings of existing structure
- Removed interior support of exterior wall by demolition
- Need to remove exterior loading on the wall to prevent failure
- Geofoam installation

Monitoring of Existing Struture

Monitoring of Existing Structure

- Monitor continuously for movement of existing structure
 - Real time
 - Seasonal
 - Daily
- Seismographs for vibration monitoring
- Dynamic strain gauge monitoring for determining of permanent damage
- Tilt beams to monitor movement of roof structure

Summary

- Historic structures have unique challenges that are not normally encountered
 - Minimize damage to existing structure
 - No changes to the existing structure
 - Requires special monitoring techniques to determine when things are occurring
 - Requires immediate response to things occurring to reduce permanent damage
 - Requires design features that will minimize damage from existing conditions

Summary

- Can use historic structures for a new water treatment plant
- Need to consider how to reduce affects of structural changes to accommodate the features of a new water treatment plant
- Need to monitor the existing structure to minimize permanent damage during construction

COMMENTS

Contact: roger.noack@hdrinc.com 813-282-5371

QUESTIONS

ONE COMPANY | Many Solutions=

2012 PA Section AWWA Annual Conference